
AI and Returns to Experience in Entrepreneurship

Ziqing Yan∗ Irisa Zhou†

September 2025
Newest Version Here

Abstract

This paper studies how advances in Artificial Intelligence (AI) have altered the

value of skills accumulated through different types of work experience in entrepreneur-

ship. Using employment histories from public LinkedIn profiles (2007-2019), we ex-

ploit industry-level variation in AI exposure following the diffusion of neural net-

works and ImageNet after 2012. We find that among U.S. LinkedIn users, the share

of founders and researchers both increased, but entry gains were concentrated among

more-experienced workers, especially those with research backgrounds. To under-

stand the mechanism behind AI’s impact on the labor market, we develop a directed

search model with occupational choice, multi-dimensional skills, and stochastic hu-

man capital investment. The model shows that AI shocks increase the productivity

premium for researchers, shifting entrepreneurship toward more experienced indi-

viduals with research expertise.

1 Introduction

Artificial Intelligence (AI) is transforming the nature of work and has profound impli-

cations for entrepreneurship. Scholars increasingly view AI as an “external enablers” of

entrepreneurship, creating new business opportunities (for example, AI startups com-

mercializing machine learning advances) even as they disrupt existing jobs (Fossen et al.,

2024). At the same time, AI may also replace or augment certain skills in the labor mar-

ket. This raises the question: what types of human skills and experiences become more

or less valuable for entrepreneurs in the age of AI?
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Classic entrepreneurship theory emphasizes the importance of a balanced skill set.

In particular, Lazear’s “Jack-of-all-Trades” theory argues that individuals with a broad,

balanced set of skills are more likely to become successful entrepreneurs (Lazear, 2004).

Entrepreneurs historically needed to wear many hats—combining knowledge of man-

agement, finance, technology, and more—whereas specialists tended to work for others.

However, the rise of AI could fundamentally alter this dynamic. Because AI systems ex-

cel at routine cognitive tasks such as prediction and classification, they may substitute for

the kinds of generalist or routine experience once useful to entrepreneurs. By contrast,

skills rooted in judgment, creativity, and domain-specific expertise are less replicable by

AI and may therefore become complementary to it. This potential for AI to hollow out

routine work while amplifying the importance of expertise provides the key motivation

for our study.

We examine this hypothesis by studying how AI exposure affects the entrepreneurial

value of different types of prior work experience. We distinguish between “repetitive”

experience, characterized by well-defined and repeatable tasks, and research-oriented

experience, which builds industry knowledge, analytical thinking, and problem-solving

skills. Our central hypothesis is that AI acts as a substitute for the former type of experi-

ence and a complement for the latter. If AI automates routine tasks, the skills gained from

such tasks lose value. Conversely, if AI enhances innovation and problem-solving, work-

ers with substantial research experience may find their skills in higher demand when

founding new ventures.

To test this idea, we use résumé data from public LinkedIn profiles provided by Rev-

elio Labs. We focus on how career patterns changed after the early 2010s, when mod-

ern AI technologies—particularly deep learning breakthroughs around 2012—began to

diffuse. We categorize industries by their AI exposure (Felten et al., 2021) and trace en-

trepreneurial dynamics over time.

Our first finding is that research roles expanded disproportionately in high-AI indus-

tries after 2012, relative to both earlier years and low-AI industries. Founding rates were

already rising pre-2012 but accelerated thereafter, consistent with evidence from new

business applications showing a surge in AI-related startups beginning around 2012 and

accelerating after 2016 (Dinlersoz et al., 2024).

Second, we show that founders in the AI era entered with more prior work experi-

ence: the average rose from 8 years to roughly 9. This shift resonates with evidence that

entrepreneurial success often comes later in life, with the average age of high-growth

founders around 45 (Azoulay et al., 2020). AI may be tilting entry further toward sea-

soned professionals with accumulated expertise.
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Third, AI exposure shifted the profile of who becomes a founder: from younger gen-

eralists to experienced specialists. Before 2012, in high-AI industries, we show that the

researchers most likely to transition into entrepreneurship tended to have less than 10

years of research experience. After 2012, this pattern flipped: those with 10–15 years of

research experience became more likely to found companies, whereas more junior candi-

dates became relatively less likely. Notably, we do not see such a shift in low-AI-exposure

industries. A researcher with a decade of experience in, say, biotech or finance might now

perceive greater opportunities (and face lower hurdles) to start an AI-enabled venture

than they would have in the past, whereas a less-experienced worker with only a routine

skill set might be less inclined or able to do so. In short, AI appears to be reweighting the

type of human capital that feeds into entrepreneurship and redistributing workers with

varying levels of experience across different occupations.

Fourth, to interpret these findings and to disentangle the effect of AI, we develop a

directed search model with occupational and industry choices, human capital accumula-

tion, and multidimensional skills. The model flexibly allows AI to affect labor markets

through switching costs, the speed of human capital accumulation, matching efficiency,

or productivity premia. This allows us to identify the specific mechanisms and their

magnitudes when a special shock like AI occurs to the labor market.

Finally, we calibrate the model and use it to assess the effect of AI on entrepreneur-

ship. Comparative statics highlight one dominant channel: AI raises the productivity

premium of research-oriented human capital. When the productivity premium for re-

searchers increases, we observe a simultaneous and modest increase in both researchers

and entrepreneurs, consistent with the small but significant empirical rise. Moreover,

individuals with initially higher levels of research experience are incentivized to pursue

roles in research and entrepreneurship after such an increase. This leads to a non-trivial

reallocation of talent in the labor market and substantially alters the distribution of ex-

perience. The model reproduces the empirical patterns we document and provides a

framework to quantify the magnitude of these effects in a general equilibrium setting.

Related literature. Our work contributes to several strands of literature.

First, we build on the broad literature examining how technological change, particu-

larly AI, is reshaping the demand for skills. A long tradition in labor economics has doc-

umented that computerization and automation tend to reduce demand for routine skills

while increasing demand for non-routine cognitive and social skills (Autor et al., 2003;

Autor, 2015). Recent studies show that AI extends this trend by automating some high-

skill cognitive tasks and reducing demand for certain non-AI cognitive positions (Ace-

moglu et al., 2022; Webb, 2019), though AI can also complement complex human work
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and raise productivity (Babina et al., 2024; Hampole et al., 2025). We contribute to this

literature by connecting this substitution–complementarity framework to entrepreneur-

ship, showing that AI shapes not only labor demand but also the composition of new

venture formation.

Second, our work is among the first to empirically analyze the impact of AI on en-

trepreneurship at the micro level. Fossen et al. (2024) reviews the direct and indirect

effect of AI on entrepreneurship. Gofman and Jin (2024) finds that AI professors’ depar-

tures from universities reduce startup founders’ AI knowledge and leads the students in

affected universities to establish fewer AI startups and raise less funding. We provide

new micro-level evidence that AI alters the selection of who becomes an entrepreneur,

shifting the margin of entry toward experienced researchers and specialists.

Third, our research contributes to the rich literature on entrepreneurs’ backgrounds

and the role of human capital in new venture performance, including the seminal work

of Lazear (2004). A consistent finding in prior work is that founder experience matters

for entrepreneurial success. Azoulay et al. (2020) find that middle-aged entrepreneurs

tend to outperform younger ones, as noted earlier. We thereby contribute to the litera-

ture by identifying a specific technological force (AI) that is altering the selection into

entrepreneurship along experience lines. We show a technology-driven shift over time in

who becomes an entrepreneur.

Finally, our model contributes to the literature by presenting a simple directed search

framework of multidimensional skill combined with stochastic human capital accumula-

tion à la Ljungqvist and Sargent (1998). We introduce multiple channels through which

AI can impact the labor market, and, through the lens of our model, we analyze which

mechanism dominates and how. We directly address the potential complementarity be-

tween AI and the researcher human capital premium, and how it affects the distribution

of individuals’ experience.

This paper is organized as follows. Section 2 describes the data and empirical strat-

egy. Section 3 presents the empirical findings. Section 4 introduces the model set-up.

Section 5 discusses the model calibration and conducts comparative statics analysis. Sec-

tion 6 concludes.
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2 Data and Empirical Strategy

2.1 Data

Our primary dataset comes from Revelio Labs, which is a labor market analytics company

that collects and analyzes data from public LinkedIn profiles. The workers profile data

contains detailed information on individuals’ work history, including job titles, employ-

ers, dates of employment, location, and industries (NAICS). Revelio Labs uses machine

learning and natural language processing techniques to extract and standardize informa-

tion as well as predicting certain variables such as gender, race, seniority of positions,

and salaries.

For the current analysis, we use a 2% random sample of all U.S. Linkedin users. As

position start and ending dates are crucial in our analysis, we only keep positions with

non-missing start date and impute the end date as the current date if it is missing. We also

drop positions with end date earlier than start date. After cleaning, our sample contains

around 0.95 million unique users and 3.8 million unique positions.

Identifying founders and researchers. We identify founders and researchers by search-

ing for keywords from their job titles. The keywords for founders are:

All Founder Keywords

cofounder, co-founder, founder, owner, CEO, chief executive officer, CTO, chief

technology officer

and the keywords for researchers are:

All Researcher Keywords

scientist, research, researcher, r&d, r and d, engineer, engineering, technologist,

technical lead, technology lead, developer, product development, data scientist,

machine learning, ai researcher, ml researcher, innovation, inventor

We also exclude confounding keywords such as “research assistant” or “research in-

tern” as we are interested in work experience after formal education.

In addition, we combine individual work history with company level data and use

the founding year of the companies to further refine our classification. Some workers,

especially those with long work experience, may become the CEO of an established firm

instead of starting their own firm and work as the CEO. Therefore, we set “founders” to

0 if the founding year is 5 years or more before the worker’s start date of that position.
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Measuring experience. Work experience is not directly available in the data. We

measure the experience of workers by counting the number of years they worked in each

position after the end date of their highest education. If the end date of the highest

education is missing, we impute it as the start year of the worker’s first position observed

in the data. In addition, when examining the probability of becoming a founder, we only

focus on the worker’s first founding event.

AI exposure. We use the industry-level AI exposure scores (AIIE) constructed by Fel-

ten, Raj, and Seamans (2021). They first identify a set of AI-related capabilities (such

as image recognition, natural language processing, and prediction) and then use O*NET

task descriptions to measure the extent to which each occupation relies on these capa-

bilities. The final occupation-level AI exposure score reflects how much AI technologies

could potentially augment or automate tasks within each occupation. These results in

a standardized occupation-level AI exposure score (AIOE). They then construct AIIE by

taking a weighted average of the AIOE using industry employment shares as weights.

We further aggregate AIIE scores at the 2-digit NAICS code level before merging with

our data. The resulting 2-digit NAICS AIIE scores range from -1.56 to 2.05, with higher

scores indicating greater exposure to AI technologies.

We define high-exposure industries as those with an average 2-digit NAICS code AIIE

score above 1 and low-exposure industries as those with an average AIIE score below

0. The identification of the effect of AI exposure on returns to experience relies on the

comparison between high-exposure and low-exposure industries. We also exclude “Agri-

culture” (NAICS2d = 11) and “Construction” (NAICS2d = 23) from the low-exposure

category as they have very different characteristics from other industries.

Under these definitions, high AI exposure industries include five 2-digit NAICS in-

dustries, such as “Information” (NAICS2d = 51) and “Professional, Scientific, and Tech-

nical Services” (NAICS2d = 54). Low AI exposure industries include ten 2-digit NAICS

industries, such as “Retail Trade” (NAICS2d = 44-45) and “Manufacturing” (NAICS2d =

31-33).

2.2 AI Shocks

We exploit AI shocks as an exogenous source of variation in AI exposure across industries

and over time. The first important turning point was the victory of “AlexNet” at the

ImageNet Large Scale Visual Recognition Challenge in late 2012. This deep convolutional

neural network achieved an error rate of 15.3%, more than 10 percentage points lower

than the runner-up. This was a stunning breakthrough that demonstrated the practical
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power of deep learning for tasks like image recognition. It created the ecosystem for a

new wave of startups built on computer vision and pattern recognition (e.g., in medical

imaging, autonomous driving, and photo applications). Therefore, we choose 2012 as the

first AI shock treatment year.

2.3 Difference-in-Differences

We implement a difference-in-differences (DiD) approach to estimate the impact of AI

exposure on the returns to experience in entrepreneurship. The treatment group consists

of individuals in high AI exposure industries, while the control group includes those in

low AI exposure industries. We define the pre-treatment period as the years between

2007–2012 and the post-treatment period as the years between 2012–2019 to avoid the

complication of the COVID pandemic. Our main regression specification is as follows:

Yijt = α + βPostt ·HighAIijt +λt +λj +λi + ϵijt (1)

where Yijt is the outcome variable for individual i in industry j in year t, Postt is a bi-

nary indicator for the post-treatment period, HighAIijt is a binary indicator for being in

high AI exposure industries. The coefficient β captures the differential changes in the

outcomes between the treatment and control groups. We further control for year fixed

effects λt and industry fixed effects λj to account for common time trends as well as ini-

tial heterogeneity across industries. We include individual fixed effects λi to control for

unobserved time-invariant characteristics of individuals that might affect their outcomes.

ϵijt is the i.i.d error term. Standard errors are clustered at the individual level.

To capture the dynamic effects of AI exposure on returns to experience, we also esti-

mate an event study specification:

Yijt = α +
7∑

k=−5,k,−1

βkPost2012+k ·HighAIijt +λt +λj +λi + ϵijt (2)

where k is the time relative to the treatment (year 2012), and βk captures the treatment

effect at time 2012 + k. This specification allows us to test the parallel trends assumption

and observe how the impact of AI exposure evolves over time, both in the short run and

the long run.
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Figure 1: Probability of Becoming a Founder by AI Exposure

3 Empirical Findings

3.1 Probability of becoming a founder

First, we examine how AI exposure affects the probability of becoming a founder. Fig-

ure 1 presents the trends in the probability of being a founder for individuals in high AI

exposure industries (AIIE score > 1), middle AI exposure industries (AIIE between 0 and

1), and low AI exposure industries (AIIE score < 0). The figure shows a clear divergence

in trends two years after the AI shock at the end of 2012, with individuals in high AI

exposure industries experiencing a noticeable increase in the probability of becoming a

founder. In contrast, the probability remains relatively flat for individuals in low and

middle AI exposure industries. This visual evidence suggests that AI advancements have

encouraged more individuals to pursue entrepreneurial ventures in AI-intensive sectors.

Table 1 presents the results from estimating Equation (1), focusing only on high and

low exposure industries for sharper comparison. We find that individuals in high AI

exposure industries are significantly more likely to become founders after the AI shock

in 2012 compared to those in low AI exposure industries. Specifically, the probability

of becoming a founder increases by 0.13 percentage points for individuals in high AI

exposure industries relative to their counterparts in low AI exposure industries. While

seemingly small, this represent a 5.7% increase from the baseline probability of 2.3 per-
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Table 1: Probability of Becoming a Founder by AI Exposure

Probability of Becoming a Founder
(1) (2) (3)
All Among Researchers Anong Other Workers

Post * HighAI 0.0013∗∗∗ 0.0014∗ 0.0012∗∗∗

(0.0003) (0.0008) (0.0004)
Control Mean 0.023 0.010 0.026
Industry FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
User FE ✓ ✓ ✓
N 3597416 702481 2894935

Notes: LinkedIn worker profiles 2007–2019. This table presents the probability of becoming a founder
for individuals in high AI exposure industries compared to those in low AI exposure industries, identified
from equation (1).

centage points among workers in low AI exposure industries in the pre-treatment period.

This suggests that AI advancements have lowered barriers to entry and encouraged more

individuals to pursue entrepreneurial ventures in AI-intensive sectors.

Column (2) and (3) break down the treatment effect by whether the worker has ever

worked as researchers. Research experience can help build judgemental skills and deep

industry understandings that are crucial for successful entrepreneurship, especially in

the age of AI when many cognitive tasks could be automated.

Among researchers, the probability of becoming a founder increases by 0.14 percent-

age points for individuals in high AI exposure industries relative to their counterparts in

low AI exposure industries. This represents a 14% increase from the baseline probability

of 1 percent in low AI exposure industries in the pre-treatment period. Non-researchers

also see a positive and significant increase in the probability of becoming a founder, but

the effect is smaller in magnitude (0.12 percentage points) and represents only a 4.6%

increase from the baseline.

We then examine the dynamic effects of AI exposure on the probability of becoming

a founder over time by estimating Equation (2). Figure 2 plots the coefficients of the in-

teraction terms on the probability of being a researcher from year 2007–2019. The figure

shows that the probability of being a researcher in high AI exposure industries relative

to low exposure industries remains quite stable between 2007–2011, but starts to diverge

after the AI shock in 2012, and the effect continues to grow in subsequent years. This

dynamic pattern suggests that AI advancements have progressively encouraged more in-

dividuals to pursue research roles in AI-intensive sectors.
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Figure 3 the coefficients for the probability of becoming a founder from year 2007–

2019. Relative to low AI exposure industries, high AI-exposure industries already saw an

increase in the probability of becoming a founder even before the AI shock. This might

be due to industry-specific factors that made entrepreneurship more appealing in these

sectors. Two years after the AI shock, the probability of becoming a founder in high AI

exposure industries accelerates. This dynamic pattern suggests that AI advancements

have progressively encouraged more individuals to pursue entrepreneurial ventures in

AI-intensive sectors.

Figure 2: Probability of Being a Researcher by AI Exposure
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Figure 3: Probability of Becoming a Founder by AI Exposure

3.2 Total Work Experience of Founders

Prior work experience plays a significant role in shaping entrepreneurial outcomes, par-

ticularly in industries affected by technological change. Individuals with substantial

work experience are more likely to acquire industry-specific knowledge, build profes-

sional networks, and develop the judgment needed to identify and exploit new opportu-

nities. In the context of AI advancements, these advantages become even more critical,

as navigating complex and rapidly evolving environments requires both expertise and

adaptability. The importance of prior work experience is evident across different sectors,

but is especially pronounced in AI-intensive industries, where the barriers to entry and

the need for specialized skills are higher.

In this section, we compare total work experience of individuals at the time they be-

come founders for high and low AI exposure industries. Figure 4 shows the average

potential work experience of workers when they first became founders.1 Workers in both

high and low AI exposure industries exhibit increases in their work experience prior to

founding a company after the AI shocks, with high exposure industries showing a more

pronounced increase, suggesting that prior work experience are becoming more and more

important in entrepreneurship in the age of AI.

1We impute work experience based on workers’ highest education end year.
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Figure 4: Work Experience of Founders by AI Exposure

3.3 Experience as Researchers When Becoming a Founder

The types of work experience also matters in entrepreneurship. Lazear (2004) argue

that individuals with diverse experiences are better equipped to identify and exploit en-

trepreneurial opportunities. AI advancements, which largely improves the idea genera-

tion process, could be complemented by deep industry experience. Therefore, individu-

als with prior research experience may have a unique advantage in founding AI-driven

startups.

We analyze the role of research experience by examining the probability of becoming

a founder at each experience level in the pre- and post-2012 period, separately for high

and low AI exposure industries. Figure 5 presents the results for high AI exposure indus-

tries and Figure 6 shows the same probability in low AI exposure industries. Experience

is restricted to 0 to 25 years to have enough observations at each level. Researchers in

low exposure industries have similar probability of becoming a founder at different ex-

perience levels before and after 2012. For researchers in high exposure industries, there

is a shift of the probability distribution from those with experience between 5–10 years

to those with a research experience level of 10–15 years. In other words, research expe-

rience is becoming increasingly important for entrepreneurship in AI-intensive sectors.

Researchers can take advantage of AI’s powerful tools to automate repetitive tasks and to

complement their research insights.
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Figure 5: Probability of becoming founders by research experience – high AI exposure

Figure 6: Probability of becoming founders by research experience – low AI exposure
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4 Model

In this section, we present a model to discuss the effect of AI on the returns to experi-

ence with multiple industry and occupational choices of becoming a worker, researcher,

or an entrepreneur. The setup of the model is similar to the framework in Huckfeldt

(2022) with DMP style matching and a stochastic human capital accumulation similar

to Ljungqvist and Sargent (1998). We particularly focus on the block recursive type equi-

librium established by Menzio and Shi (2010) and Menzio and Shi (2011).

4.1 Environment

Time is discrete with a common discount rate β. The economy is populated by a con-

tinuum of agents who differ in their experiences, measured as (eW , eR), corresponding to

a worker’s experience as a worker and as a researcher. Agents follow a perpetual youth

setup à la Blanchard (1985), exiting the economy at rate σ . In each time period, an equal

measure of agents enters the economy as newborns, each drawing a random initial pair

of experiences (eW , eR) from a joint distribution F(eW , eR).

Firms post vacancies in perfectly segmented submarkets denoted by the experiences

(eW , eR), occupation o, and industry j. In particular, there are three types of occupa-

tions: worker W , researcher R, and entrepreneur E. There are two types of industries:

AI-intensive (or high exposure to AI shock) I and non-AI-intensive (or low exposure to

AI shock) N . Workers search for a submarket to match with. Similar to Lazear (2004),

we interpret occupations such that workers and researchers would focus more on one

experience, while entrepreneur is required to have a more balanced experience pair. We

assume complete contract as in Menzio and Shi (2011), such that each submarket is as-

sociated with a lifetime utility x. Given wage posting in x lifetime utility, workers direct

their search into each submarket.

Workers can switch occupations and industries at a cost c(eW , eR, o, j) both when they

are unemployed and when they are employed.

4.2 Production Function

Firms in each occupation o and industry j produce output by taking only labor as input.

The production function is given by a CES aggregator between the two experiences. Each

occupation and industry is allowed to differ in production parameters.

goj(eW , eR) = Aoj(αoe
ρoj
W + (1−αo)e

ρoj
R )

1
ρoj (3)
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The substitution parameter ρoj →∞ for occupations {W,R} represents that agents in

these two occupations only care about the maximum of their two experiences, while ρoj →
0 for entrepreneurs, indicating that they require a more balanced pair of experiences (i.e.

Cobb-Douglas production function). In our calibration, we consider large ρoj for workers

and researchers and 0 for entrepreneurs, in the spirit of the key theoretical framework

of Lazear (2004).

The share parameter αo captures the relative importance of worker experience in oc-

cupation o. We assume αW > αR, so that worker experience is most important for workers,

while researcher experience is most important for researchers.

4.3 Human Capital Accumulation

Human capital accumulation occurs stochastically while agents are employed. While

employed in occupation o in{W,R} and indutry j ∈ {I,N }, with probability πj , individuals’

human capital eo increases by ∆e.

et+1
o,E =

(1− d̃)eto,E +∆e, with probability πj

eto,E , otherwise
(4)

When unemployed, human capital depreciates at rate d̃o each period deterministically.

et+1
o,U = (1− d̃o)eto,U (5)

4.4 Timing of the Model

The timing of the model is illustrated as in Figure 7 and described as follows. At the be-

ginning of each period, employed matches produce and unemployed individuals receive

unemployment benfit b. After production, agents update their human capital based on

their employment status and the stochastic process described earlier. Agents then ex-

perience exogenous separation shock at rate δ and are given the choice to endogenously

separate to unemployment. Agents unemployed from previous time period search for

new matches at the end of the period. Agents who exogenously or endogenously separate

from their matches this period remain unemployed and can only search for a new match

next period.
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Human Capital

Change
Separation Search &

Matching

↑
when firm value is written

↑
when worker’s problem is written

↑
when firm’s vacancy
problem is written

Figure 7: Timing of the Model

4.5 Value Functions

Now we are ready to write down the value functions. In particular, we will write down

the match value function instead of laying out worker and firm problem separately. Let

ω ≡ (eW , eR, o, j) denote the state of the economy.

For vacant jobs, firms post a vacancy with cost koj associated with a promised lifetime

utility x.

Vt(ω) = −koj + (1− σ )q(θt(ω))(Jt(ω)− x) (6)

Free-entry assumption implies:

q(θ(ω)) =
koj

Jt(ω)− x
(7)

For unemployed individuals conditional on not switching the industry-occupation

pair, the value function is given by:

Ut(ω) = boj + max
x

[
(1− σ )βE{p(θt(ωt+1))(x −Ut+1(ωt+1)) +Ut+1(ωt+1)}

]
(8)

Including endogenous switching,

Ut(ω) = max
o′ ,j ′
{Ut(ω)− c(ω)} (9)

Finally, for employed matches, we can write down the joint value function as:

JAct
t (ω) = yt(ω) +

[
(1− σ )βE

[
δUt+1(ω′) + (1− δ)(Jt+1(ω′) +λeR(ω′))

]]
(10)

Where R(ω) is the on-the-job search additional value:

R(ω) = max
o,j,x
{p(θ(ω))(x − Jt(ω))− c(ω)} (11)

Considering endogenous separation, the final value function is given by:
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Jt(ω) = max {JAct
t (ω),Ut(ω)} (12)

Equilibrium We focus on Block Recursive Equilibrium (BRE) where the distribution of

(eW , eR, o, j) is stationary. As long as each submarket results in the same optimal policy

functions, the equilibrium can be block recursive. In particular, the optimal occupation

and industry choices only depends on the agent’s individual experience pairs, and does

not rely on how competitive each submarket is. Market tightness is completely deter-

mined by matching efficiency and vacancy posting cost.

5 Model Calibration

In this section, we first describe our solution strategy for solving the steady state equi-

librium of the model, followed by results from our calibration exercise for comparative

statics.

5.1 Solution Strategy

The equilibrium is solved via standard value function iteration. The solution is obtained

in the following process.

1. Precompute the flow value for each state space, and build human capital transition

matrix for each state.

2. Initialize the value functions U0 and J0 using the separation and unemployment

value

3. Given the value functions U0 and J0, compute net value in switching across destina-

tions and obtain the optimal policy for both unemployed and employed individuals

4. Repeat the process in step 3 until convergence of value functions

The optimal occupation choices for any experience combination (eW , eR), as solved in

this step, are illustrated in Figures 8a and 8b for AI-intensive and non-intensive indus-

tries, respectively. We observe that agents sort more into worker occupations; thus, as we

shift from the initial distribution to the steady-state distribution of employed individ-

uals, the concentration of experience shifts toward worker experience, while researcher

experience deteriorates.
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(a) AI Intensive Industries

(b) AI Non-Intensive Industries

Figure 8: Optimal Occupation Choices for AI Intensive and Non-Intensive Industries
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After obtaining the optimal value functions and policy functions, we build the tran-

sition matrix and invert it to obtain the steady state distributions. In particular, let µE
and µU be the distributions of employed and unemployed individuals at current period,

respectively. Then, the distribution of employed and unemployed individuals in the next

period, denoted by µ′E and µ′U , can be expressed as:

µ′E = µ
stay
E→E +µswitch

E→E +µU→E

µ′U = µU→U +µE→U + NewBorn
(13)

Or equivalently, we can build a transition matrix TM such that:

µ′Eµ′U
 = TM

µEµU
+

 0

NewBorn

 (14)

In our framework, the inflow of newborn individuals is set equal to the outflow of

exiting individuals, ensuring a stationary population mass. Newborns are assigned to

experience pairs (eW , eR) as unemployed, with a uniform allocation across occupations

and industries. The initial experience distribution is concentrated near the lower end of

the experience space, reflecting limited prior human capital. The specific distribution

used is depicted in Figure 9a, where newborns are clustered at the bottom left corner of

the experience pair, indicating low initial experience. Distributions are normalized to 1.

5.2 Comparative Statics

In this section, we discuss key comparative statics. For the baseline calibration exercise,

we set parameters to conventional values from the literature and focus on how changes in

key parameters influence occupational shares. Proper estimation is left for future updates

to this paper. As shown in Section 3, the introduction of AI leads to increases in the shares

of founders and researchers, with a corresponding decrease in the share of workers. We

highlight the model parameters that drive these changes.

Occupational Productivity Premium The occupational productivity premium is a key

parameter influencing the distribution of workers across occupations. We simplify our

productivity term by decomposing it into three components: an aggregate level Ā, an

occupation-specific premium Ao, and an industry-specific premium Aj , as shown in Equa-

tion (15).
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(a) Newborn Experience Distribution

(b) Employed Experience Distribution

(c) All Individuals Experience Distribution

Figure 9: Experience Distributions of (a) Newborns, (b) Employed, (c) All Individuals for
the Baseline Calibration
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Aoj = Ā ∗Ao(o) ∗Aj(j) (15)

For simplicity, we set Ā to 1 for normalization purposes. The baseline productivity is

normalized so that AI-intensive industries are 10% more productive than non-intensive

industries, researchers are 5% less productive than workers, and entrepreneurs are 15%

more productive than workers. We vary the occupational productivity premium for work-

ers, as illustrated in Figure 10a, and for researchers, as shown in Figure 10b, to examine

how occupational shares change. The other two premia remain fixed when varying the

occupational productivity premium for one occupation to observe the relative changes in

occupational shares. Since our production function is continuous and smooth, the trends

are monotonic even outside the range of variation demonstrated in the figures.

An increase in the worker productivity premium leads to more agents choosing to

become workers, while fewer become entrepreneurs or researchers. In contrast, raising

the researcher productivity premium increases the shares of both researchers and en-

trepreneurs, whereas increasing the worker productivity premium reduces both. This

indicates that one way to interpret the impact of an AI shock on the labor market is

through a rise in the productivity premium for researchers. This interpretation aligns

well with the technological advances driven by AI that are spreading to other fields, such

as Medicine, Healthcare, Finance, and etc. Therefore, these two parameters (normalize to

entrepreneur productivity) are crucial in our model for estimation, which is stil ongoing.

HumanCapital Accumulation Probability Since human capital accumulation is stochas-

tic, the probability of increasing human capital is important in determining occupational

choices. In our quantitative exercise, we discretize experience into grids and set re-

searchers to have a 10% higher probability of accumulating researcher experience eR than

workers have of accumulating worker experience eW . Therefore, we vary the worker hu-

man capital accumulation probability to observe how occupational shares change, while

maintaining the 10% gap—i.e., researchers always accumulate experience faster.

Figure 10c shows how the shares of each occupation change as the probability of hu-

man capital accumulation increases. As human capital accumulation becomes easier, the

share of entrepreneurs rises, the share of workers falls, and the share of researchers first

increases and then decreases. This illustrates the important mechanism of sorting agents

by skill into different occupations. When it is easier to accumulate rather than lose hu-

man capital, agents are more likely to move toward the top right region of the experience

space, where entrepreneurs are more likely to be found, as shown in Figure 8.
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(a) Worker Productivity Premium AW (b) Researcher Productivity Premium AR

(c) Human Capital Accumulation Prob. π (d) Match Efficiency γ

Figure 10: Comparative Statics: Occupational Share Changes vs Key Parameter Changes
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Matching Efficiency Following Menzio and Shi (2010), we choose constant elasticity of

substitution contact rate functions p(θ) = (1+θ−γ )−
1
γ and q(θ) = (1+θγ )−

1
γ . The matching

efficiency parameter γ is important in determining the tightness of the labor market. Fig-

ure 10d shows that with inefficient matching technology, most agents choose to become

workers. Any small increase in matching efficiency leads to a large shift of the economy

towards researchers and entrepreneurs. This is because, with more efficient matching

technology, there is a higher probability of being matched with the occupation that re-

turns higher values. Thus, more agents move into these occupations—entrepreneurs and

researchers—given that they have higher productivity baselines.

Effect of Increase in Researcher Productivity Premium on Skill Distribution From

the previous discussion, we can infer that AI likely increases the researcher productiv-

ity premium. We now examine how this change affects the experience distribution of

individuals. Compared with Figure 9b and 9c, Figure 11 shows a clear shift towards

the upper left of the experience distribution map, making the steady-state distribution

of experience more symmetric across the two experience types. Individuals with higher

researcher experience are now incentivized to shift to researcher roles and entrepreneur-

ship.

6 Conclusion

This paper studies the impact of Artificial Intelligence on the returns to experience in en-

trepreneurship. We distinguish between two main types of experience: general work

experience, which is repetitive and prone to substitution by AI, and research experi-

ence, which is otherwise hard to substitute. We confirm that AI increases the rate of en-

trepreneurship and the share of researchers via a difference-in-differences analysis using

LinkedIn data. We also find that the average work experience before becoming a founder

has increased. Importantly, research experience is more valuable, and we document a

shift towards more experienced researchers starting their own businesses. Through the

lens of our quantitative model with multidimensional skill and human capital accumu-

lation, we find that AI primarily increases the productivity premium for research expe-

rience, biasing the labor market towards individuals with such backgrounds. This has

important implications for understanding how AI is reshaping the entrepreneurial land-

scape and the value of different types of experience in this context.

Our work is among the first to empirically investigate the intersection of AI and en-

trepreneurship through multidimensional skill frameworks. This is an active area of re-
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(a) Employed Individuals Experience Distribution

(b) All Individuals Experience Distribution

Figure 11: Effect of Increase in Researcher Productivity Premium on Experience Distri-
butions for Employed Individuals and All Individuals
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search, and we aim to carefully estimate the model parameters and provide quantitative

results on how AI impacts entrepreneurship and the returns to experience.
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