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Abstract

How do information frictions distort the choices of college majors and industries? This paper

argues that uncertainty about individual’s major-industry fit is a primary driver of mismatch

and earnings dispersion among skilled workers. Using confidential Canadian administrative data

linking education and employment histories, I establish three key facts. Firstly, I find that the

major-industry mismatch is significant in the data. Secondly, on-the-job learning about major-

industry match partially resolves the uncertainty. Thirdly, using a natural experiment that lever-

ages LinkedIn’s entry into Canada, I confirm that more information reduces mismatch. To quan-

tify the aggregate consequences of these frictions, I develop a life-cycle directed search model

with Bayesian learning where individuals with multidimensional skills choose majors, industries,

and climb the job ladder within an industry. The model is calibrated to the Canadian economy

and is consistent with the empirical facts. Imperfect information steers graduates to suboptimal

majors, industries, and rungs on that ladder. Unresolved uncertainty about skills in alternative

industries, combined with search frictions, makes mismatch persistent. The model reveals that

information frictions reduce average output by 25% at labor market entry. Counterfactuals show

that improving the efficiency of this learning process not only raises aggregate output but also

triggers a significant reallocation of talent towards high-uncertainty majors, as these majors be-

come more attractive.
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1 Introduction

Are college graduates from a particular major working in their right industry? The allo-

cation of talent is a cornerstone of economic growth, especially for high-skilled workers

with a college degree1. How workers match with jobs has first-order consequences for ag-

gregate output, productivity, and inequality (Bandiera et al., 2024). Yet, even within the

same major, graduates face vastly different life outcomes, with earnings penalties for mis-

match being well-documented (Andrews et al., 2022; Cassidy and Gaulke, 2023; Lindley

and McIntosh, 2015; Robst, 2007). This raises key questions: What causes these outcome

gaps, and can targeted interventions close them?

This paper finds that the primary driver of such gaps is limited information on one’s

own skills and the fit to each industry. Conditional on an individual’s major, graduates

enter the labor market uncertain about which industry offers the best return for their

skills. This uncertainty forces graduates into a dynamic trial-and-error learning process.

Workers receive noisy signals about their skill in the industry they join, and dynamically

decide whether to stay or switch industries based on updated information. This process

generates a large and persistent mismatch. Some workers find their most productive in-

dustry quickly, while others sort through a series of poor or mediocre matches. Crucially,

the labor market uncertainty also shapes ex-ante educational choices, influencing a stu-

dent’s decision of what to study because majors vary in the level of skill uncertainties.

To establish this mechanism, I provide extensive empirical evidence and develop a novel

framework of directed search incorporating educational and labor market choices.

I begin by documenting key facts about labor-market dynamics and sorting patterns of

college graduates. I use a unique Canadian administrative panel linking the employment

records of all post-secondary graduates studied and worked in Canada to their detailed

educational histories. I further enrich this dataset by matching it with unemployment in-

surance records and high school grades when available. This comprehensive data allows

me to establish several stylized facts about labor market and earnings dynamics, which

provide direct evidence of on-the-job learning under significant information frictions.

I construct a measure of major-industry match quality at the individual level using the

residual from a population-level earnings regression. I ask how unexplained workers’

earnings affect their labor market outcomes2. The dispersion of the unexplained earn-

1In this paper, I focus on bachelor’s degrees and higher, using “college” and “university” interchangeably. Differences
between colleges and universities are not the focus of this paper and remain for future research.

2Although focusing on different topics, this idea is inspired by the revealed preference approach of Sorkin (2018) in
ranking jobs and how residual wages tells important information about job loss (Baley et al., 2022).
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ings is high, implying significant level of mismatch. This measure reveals a striking,

U-shaped relationship with the probability of switching industries, even after condition-

ing on college major3. While it is intuitive that matches with large negative residuals are

more likely to dissolve, the crucial finding is that matches with large positive residuals

also end at a higher rate. This symmetrical response to large earnings deviation points di-

rectly to information friction and suggests both workers and firms correct poor matches.

The dynamics of mismatch over time highlight industry-specific learning. The variance

of mismatches decreases with industry tenure, as good matches are confirmed and poor

ones are dissolved. However, this learning does not transfer across industries. In fact,

the overall mismatch variance nearly doubles in 14 years after graduation. Together, the

two opposing trends indicate that switching industries resets the learning process. The

intensity of switching varies across majors. Graduates from majors like Arts and Human-

ities exhibit persistently higher switching rates than those from majors like Education,

implying that choosing a major is also choosing a level of career uncertainty.

Further supporting the learning mechanism, I show that these patterns cannot be a story

about innate ability. Using 12th-grade test scores to proxy for pre-college ability, I find

that while higher ability predicts sorting into specific majors, it does not predict a better

initial industry match.

To provide causal evidence for information availability shaping labor market outcomes,

I use a Difference-in-Differences design to estimate the effect of LinkedIn’s 2009 entry

into Canada to outcomes of new graduates. My identification strategy compares grad-

uates from majors with higher career path uncertainty (Business and Law), who were

more likely to be affected by the introduction of LinkedIn, to those from majors with

more structured career paths (Engineering and Construction), who were plausibly less af-

fected. LinkedIn improves information on career opportunities. First, it improves initial

matches, reducing first-year mismatch by 0.25 standard deviations. Scond, it accelerates

the correction of poor initial choices, enabling mismatched workers to leave for a better

fit four months sooner. These results provide causal evidence that greater information ac-

cess leads to more efficient labor market sorting, both by improving the initial allocation

of talent and by expediting the dissolution of poor matches.

To formalize and quantify the cost of information frictions evident by the empirical facts,

I develop a life-cycle directed search model with uncertainty (Menzio et al., 2016; Baley

et al., 2022), a one-time college major choice (Arcidiacono et al., 2012), and industry

mobility (Carrillo-Tudela et al., 2022). The model features three main components.

3This result is reminiscent of the results from Groes et al. (2015)
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First, individuals with heterogeneous innate abilities choose majors with different labor

market prospects, subject to Frechet preference shocks. Majors differ in their level of skill

uncertainty, productivity terms, and skill requirements. This choice of majors reflects the

uncertainty associated with each major, as individuals only observe a prior of the major

specific skill distribution. Consider, for example, a high-ability individual who chooses

to major in mechanical engineering over history, anticipating better career prospects.

Second, workers direct their job search to a specific industry and job rung subject to

under- and over-qualification penalties. Workers trade off between higher output gain

and expected mismatch, given their current belief about their skills in the current in-

dustry. For instance, the high-ability worker with a mechanical engineering degree may

begin in an entry-level construction role, expecting average skills in that industry.

Third, while employed, workers receive noisy signals about their true skills in the indus-

try. The belief updating on their skills in the employed industry follow standard Bayesian

updating. They then decide whether to climb the job ladder, stay, or switch based on up-

dated beliefs. The mechanical engineer in construction might receive a positive signal

that prompts a promotion or a negative signal that could lead to separation if staying is

less valuable than the outside option.

I solve the model using Block Recursive Equilibrium (BRE) techniques (Menzio and Shi,

2010) to handle the high-dimensional state space from multidimensional skills and learn-

ing. This approach can cleanly charaterize the allocation of workers across majors, indus-

tries, and rungs independent of the aggregate distribution of workers and firms.

This model is innovative in several respects: it jointly incorporates multidimensional skill

matching, dynamic industry and job rung choices, and belief updating via noisy signals

under imperfect information. Relative to the extensive literature on incorporating search

fricitons and mismatch in the labor market4, I include life-cycle educational choices that

are endogenously determined by the level of uncertainty faced in the labor market. There

are four key insights from this model.

First, imperfect information, or uncertainty, steers graduates of a given major into sub-

optimal industries and job rungs within industries. Importantly, uncertainty exists both

about the current industry and outside options. Therefore, information friction in this

economy never fully resolves. Workers only learn about their skills in the current indus-

try and not about outside options beyond the unemployment benefits.

Second, unresolved uncertainty regarding outside options and search frictions makes the

4See recent review paper Wright et al. (2021) that discusses extensively the theoretical progress.
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mismatch persistent. Longer industry tenure leads to self-selection: good matches re-

main, poor matches exit. Separation decisions depend on noisy signals: if a signal falls

below a threshold set by the major-specific prior, the worker exits. Since beliefs reset to

prior upon switching, workers with poor skills across industries tend to switch repeat-

edly and never settle in one industry. Conversely, workers with strong skills across all

industries may settle prematurely in suboptimal industries without further exploration.

Thirdly, information friction and learning speed alter educational choices. If learning is

slow, workers choose majors with a more controlled yield, which have lower variance and

a lower mean. If people can quickly discover their type, they will be more willing to pick

majors with more varied outcomes.

Lastly, individuals tend to choose the industry that offers the highest average pay for their

major. This industry may not actually be the best fit. Since each person sees the same

prior before matching, ex-ante, the highest average pay industry looks most attractive,

and people believe they will achieve the highest yield there.

I calibrate the model using Canadian administrative data via the Generalized Method

of Moments. The calibrated model quantitatively replicates the key stylized facts from

the empirical analysis. It generates the observed sorting of students into majors by abil-

ity and of workers with different majors into industries, including the heterogeneity in

sorting frictions across different majors. Crucially, the model accounts for the U-shaped

relationship between earnings residuals and industry switching, alongside providing the

divergent paths of mismatch variance declining within an industry but rising over a ca-

reer. This close alignment between the model’s predictions and the data provides strong

validation for the proposed learning mechanism and the role of information frictions.

I first quantify the productivity loss from information frictions by comparing the baseline

economy to a first-best benchmark with perfect information. I decompose this loss in

two steps. First, holding major choices fixed, I let individuals know exactly what their

skills are for each industry. Second, I allow individuals to re-optimize their major choices

given this perfect information. The model reveals substantial output gaps. Relative to

the perfect-information benchmark, average output per employee is 25% lower in the

baseline at entry and narrows with continuous industry tenure to roughly 12% after 30

years. This persistent loss reflects the limits of on-the-job learning; workers only discover

their match quality in their current industry, leaving their potential in outside options

unresolved. The model shows a key behavioral response: workers compensate for weak

industry matches by climbing the internal job ladder more aggressively. Fearing the high

cost of resetting their beliefs by switching industries, workers overvalue “good-enough”
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matches, leading them to underexperiment across different sectors.

In a different counterfactual exercise, I show how the efficiency of learning shapes ed-

ucational choices. I increase the precision of the signals workers receive on the job,

which accelerates the correction of poor matches. A four-fold increase in signal preci-

sion raises steady-state output per worker by 3% but triggers a significant reallocation

of talent across majors. Majors with higher career uncertainty attracts more students,

as faster learning reduces the cost of exploring one’s fit. This effect is particularly pro-

nounced among high-ability individuals. Conversely, an opposite exercise that prevents

learning by making signals infinitely noisy pushes students into majors with low outcome

variance, as they seek to avoid the risk of bad matches entirely.

Literature Review This paper bridges three strands of literature. First, I build on stud-

ies of earnings heterogeneity among college graduates. Second, I add to the understand-

ing of labor market mismatch. Third, I advance life-cycle directed search models by

incorporating a Bayesian learning mechanism to analyze information frictions.

First, I build on the literature documenting substantial earnings heterogeneity among

college graduates, even within the same major5 (Andrews et al., 2022). The literature at-

tributes this earnings variation to several factors: changing skill prices (Altonji et al.,

2014), value-added differences across majors (Kim et al., 2015; Andrews et al., 2017;

Bleemer and Mehta, 2022; Hastings et al., 2013) institutions (Murnane et al., 2024), and

conditions at labor market entry (Altonji et al., 2016; Liu et al., 2016; Oreopoulos et al.,

2012; von Wachter, 2020). A shared conclusion is that these observable characteristics,

while significant, do not fully explain the diverse outcomes of college graduates. Cru-

cially, this literature focuses on between-major differences, whereas my paper identifies

a powerful mechanism for the significant within-major heterogeneity: skill mismatch

driven by information frictions6 in the labor market for industry-specific skills7. Method-

ologically, where prior work is largely empirical, I contribute by combining causal evi-

dence with a structural model to quantify the aggregate consequences of this friction.

Second, I contribute to the literature on labor market mismatch8 by identifying infor-

5For comprehensive reviews of the college major choice literature, see Oreopoulos and Petronijevic (2013) and Altonji
et al. (2016), confirming significant financial benefits of a college degree and substantial variation in earnings across fields.

6Information channel has been extensively studied on understanding how multiple stages of post-secondary studies are
decided. See, for example, Hastings et al. (2016) for major choices and Kerr et al. (2020) for institution selection.

7Industry premium has long been recognized as an important source of earnings heterogeneity Krueger and Summers
(1988), with especially enthusiasm towards industry-specific human capital (Neal, 1995). Bleemer and Mehta (2022) high-
lights the importance of industry in explaining earnings premium for better-paid majors.

8Literature on mismatch is vast, and the definition of mismatch varies. Some look at mismatch as misalignment between
vacancies and unemployed workers (Faberman and Mazumder, 2012; Şahin et al., 2014), while some look at mismatch as
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mation frictions as a key driver of the under-explored major-industry dimension. Prior

work has largely focused on the worker-occupation link, using either standardized test

scores against O*NET requirements (Guvenen et al., 2020; Baley et al., 2022; Bandiera

et al., 2024) or survey data on job relevance (Robst, 2007; Lindley and McIntosh, 2015;

Cassidy and Gaulke, 2023). By explicitly modeling the ex-ante educational choice, I dis-

tinguish vertical sorting on an occupational ladder9 from the more nuanced, horizontal

sorting across industries. This perspective is critical for understanding why an engineer-

ing graduate’s earnings differ substantially between the Finance and Information sectors.

To isolate this channel, I model skills as ex-ante industry-specific (Baley et al., 2022)—not

as idiosyncratic match-quality shocks (Menzio and Shi, 2011)—and use a directed search

framework to abstract from exogenous frictions (Lise and Postel-Vinay, 2020; Lindenlaub

and Postel-Vinay, 2023). Methodologically, I advance the work on information frictions

as a mechanism for mismatch (Jovanovic, 1979; Baley et al., 2022)10 by providing both

causal evidence and a structural estimation. My framework is the first to then link these

post-graduation labor market frictions back to ex-ante educational choices, showing how

the prospect of learning and mismatch risk shapes human capital investment.

Third, I advance the literature on search and matching by developing a tractable life-cycle

model that links educational choice to labor market sorting. I make three theoretical con-

tributions. First, I synthesize a life-cycle framework (Menzio et al., 2016; Papageorgiou,

2014) with directed search and multidimensional learning a la Jovanovic (1979). This

setup moves beyond the uni-dimensional learning in Groes et al. (2015) and, distinct

from Baley et al. (2022), embeds a rich learning mechanism within a life-cycle frame-

work where search is directed across industries. Second, and most critically, I embed this

rich search and learning process within an irreversible educational choice framework (Ar-

cidiacono et al., 2012; Flinn and Mullins, 2015). This is my central innovation, as it allows

me to analyze how the prospect of future labor market frictions distorts students’ ex-ante

major choices. This link has been previously underexplored. Finally, the model identi-

fies a novel, acyclical mechanism for scarring. Whereas the literature emphasizes cyclical

shocks (Altonji et al., 2016; Liu et al., 2016), my framework quantifies how persistent

penalties on careers and aggregate productivity (Bandiera et al., 2024) arise purely from

initial major-industry mismatch. The framework is tractable and well-suited to study

various educational and labor market policies.

misalignment between worker skills and job requirements (Guvenen et al., 2020). In this paper, I focus mostly on the latter
but incorporate employment transitions as key outcomes to look at.

9Occupation sorting shapes earnings dynamics both generally (Kambourov and Manovskii, 2009) and over the business
cycle (Huckfeldt, 2022; Carrillo-Tudela and Visschers, 2023).

10Existing work has shown how information affects pre-college major choice (e.g., Qiu (2025)), labor market search more
broadly (Conlon et al. (2018); Bradley and Mann (2024)), and how technology influences job search behavior Autor (2001).
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The rest of the paper is organized as follows. Section 2 describes the data and presents

motivating empirical patterns. Section 3 provides causal evidence on the role of informa-

tion frictions in improving labor market outcomes. Section 4 introduces the theoretical

model, and Section 5 discusses the estimation strategy, while Section 6 explores counter-

factual scenarios. Finally, Section 7 concludes.

2 Data and Motivating Trends

2.1 Data Description

I first describe the data used in this paper briefly. I use unique Canadian administrative

data from the Education and Labour Market Longitudinal Platform (ELMLP) provided by

Statistics Canada. The ELMLP brings together several datasets that enable the study of

labor market outcomes for postsecondary students in Canada. The main dataset contains

the universe of registration information for all post-secondary attendees in Canada from

2009 to 2021, with partial coverage starting from 2004. In this paper, I combine four

datasets within this platform:

1. The Postsecondary Student Information System (PSIS) provides data on major (up

to 6-digit CIP code), institution, province of residence, and graduation year for all

postsecondary students in Canada from 2005 to 2021. Majors are classified using

CIP codes at various levels of detail: for example, 2-digit codes such as Business,
Management, Marketing, and Related Support Services (52) vs. Health Professions and
Related Programs (51); 4-digit codes such as 52.03 (Accounting and Related Services)
vs. 52.08 (Finance and Financial Management Services); and 6-digit codes such as

52.0801 (Finance, General) vs. 52.0807 (Investments and Securities). The main anal-

ysis uses 2- or 4-digit CIP codes to balance group size and detail, further separat-

ing large fields (such as splitting CIP 52 into 52.03 Accounting, 52.08 Finance, etc)

where enrollment counts justify. All group separations are based on the number of

students within each finer category.

2. The T1 Family File (T1FF) contains individual tax records from 2000 to 2021, pro-

viding annual data on basic worker characteristics, wage and self-employment earn-

ings, and industry of employment (up to 3-digit NAICS code). For example, indus-

tries are classified as 517 (Telecommunications) or 518 (Data Processing, Hosting, and
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Related Services), allowing for analysis of industry switching at a detailed yet mean-

ingful level.

3. The Employment Insurance Status Vector (EISV) offers details on unemployment

spells, including the reason for job separation for each filing. Therefore, multiple

spells within the same year will be recorded separately. This information is avail-

able to those who applied to Employment Insurance, regardless of their eligibility.

4. The Ontario 9/12 high school file contains grade 12 course performance in Math-

ematics and Language for a subset of students who attended public high school

in Ontario between 2013 and 2016. Both Mathematics and Language classes at

the grade 12 level are required for high school students to obtain the high school

diploma.

The main sample used in the analysis focuses on individuals who obtained a terminal

bachelor’s degree and were aged 18 to 35 at graduation. Throughout the analysis, I use

the term “college graduates” to refer to these individuals. I only include terminal degrees

to avoid contamination of returning to schooling reflected as poor labor market perfor-

mance. I track these graduates longitudinally from their year of graduation through the

latest year available. The results presented in the empirical section are robust to include

students who obtain a bachelor’s degree or higher, or to include all graduates from termi-

nal post-secondary institutions. In fact, including more groups makes the results quan-

titatively more significant. Detailed descriptions of each dataset and sample limitations

are provided in Appendix A.5.

2.2 Large Heterogeneity within College Majors

I first establish a rather surprising empirical fact that prefaces this paper: there exists

massive and persistent heterogeneity in earnings among college graduates within the

same major. Figure 1a illustrates this point by plotting the earnings distributions for

the highest- and lowest-earning college majors in the U.S. The distributions overlap sig-

nificantly.

To illustrate this more directly, following Song et al. (2019), I decompose total earnings

variance and find that over 80% of it arises from differences among graduates from the

same major. This variance rises to 96% when residualized by institution and gender.

This massive and persistent within-major variance, shown in Figure 1b, suggests system-

atic and implicit forces shaping earnings differences among college graduates beyond the
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choice of major. Section B.1 provides more details on this decomposition and robustness

checks.

(a) Overlapped Dist. of log earnings (b) Total variance decomposition

Figure 1: Earnings distributions and total variance decomposition
Notes. Panel (a) plots density distribution of log annual earnings for the majors with the highest and lowest mean earnings using
National Survey of College Graduates from U.S. for young graduate aged between 25 to 35. The sample only include full-time
workers and are selected exactly as in Altonji et al. (2014). Panel (b) reports the within-major and between-major shares of total
earnings variance computed separately for each cohort c and years since graduation t. Across cohorts and years, the within-major
share exceeds 80% and remains stable over t. The figure plots the time trend for the cohort graduated in 2010. The total earnings
variance increased roughly from 0.3 to 0.42 in the first 14 years post-graduation, shown by the dotted green line using the right
axis. See Section B.1 for more details regarding the variance decomposition.

2.3 Switching Patterns and Earnings Deviation

To investigate the drivers of earnings heterogeneity within fields of study, I construct a

measure of individual-industry match quality, conditional on a graduate’s major. This

measure captures the component of an individual’s earnings that deviates from the level

predicted by their observable characteristics, thereby quantifying the match quality be-

tween a worker and their industry. Because I use population data for all Canadian college

graduates, this procedure is a decomposition rather than an estimation, which avoids

common econometric issues like measurement error.

I use this measure to document three key empirical facts: (1) mismatch predicts industry

separations; (2) mismatch is resolved through industry-specific tenure, consistent with a

model of learning; and (3) the intensity of this uncertainty varies systematically by major.

Capturing Match Quality I consider the difference between the actual earnings of an

individual and the predicted earnings based on a mincerian-type regression as a measure

of match quality. The intuition is that after controlling for a rich set of observable char-

acteristics, the residual earnings component reflects the unobserved quality of the match
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between an individual and their employed industry at time t. At the definition stage, I

will be agnostic about the source of such variation and whether the sign or the magnitude

of this variation has any economic interpretation. It will become clear as I demonstrate

and describe the motivating facts that a value closer to 0 is more stable, thus a better

match.

The main specification is as follows:

log(yijmct) = αi + βmj +γjt + ξmt + δmjτ + f (age) + ϵijmct (1)

where yijmct is the total earnings of individual i employed in industry j, graduated from

major m and cohort c in year t, with industry tenure τijt. The model includes individual

fixed effects αi , a major-specific industry fixed effect βmj , industry-time fixed effect γjt,

major-industry specific tenure profiles δmjτ , and a polynomial time trend f (age) that in-

cludes age, age squared, and age cubed. Standard errors are clustered at the individual

level. While I cannot directly share the regression table due to data confidentiality, the

R-squared of this regression is 0.5383.

This comprehensive specification accounts for key determinants of individual earnings,

including time-invariant individual heterogeneity, and detailed, major-specific returns to

industry experience, among other controls. Controlling for institution-time fixed effects

does not change any of the results listed below. Institutions in Canada are mostly public

with similar tuition fees, and the explanation power of institution fixed effects is small. I

omit it in the main specification for parsimony.

I denote the earnings deviation, or the residuals from this comprehensive regression, as

Mismatch, Mit. More precisely,

Mit ≡ ϵ̂ijmct = log(yijmct)− log(ŷijmct) (2)

By construction, Mit > 0 implies that individual i is earning more than predicted by their

observables at time t; similarly, Mit < 0 implies this individual earns less. Note Mit is

denoted only with i and t because given a year and an individual, the industry, major,

and cohort are determined. The subsequent facts will validate that a value of Mit close to

zero represents a stable, high-quality match.
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2.4 Stylized Facts on Match Quality and Labor Market Dynamics

I now show that this measure of mismatch is strongly correlated with workers’ career

progression, employment stability, and industry sorting over lifetime.

2.4.1 Fact 1: Higher Mismatch Is Associated With a Greater Probability of Industry
Separation

I first focus on the correlation between the deviation of earnings to industry switching

probability in the next year. I binned the earnings residuals in quintiles and calculated

the share of industry switchers, both experiencing unemployment (EUE transitions) and

not (EE transitions), without conditioning on whether they land a job in the next year. The

relationship of interest is whether voluntary and involuntary separations are correlated

with the quality of matches in previous employment.

The relationship between past mismatch, Mi,t−1, and subsequent industry switching is

strikingly U-shaped. As shown in Figure 2, higher magnitudes of Mi,t−1, regardless of

the sign, are associated with a higher probability of switching industries in the next year.

In contrast, workers whose earnings are close to their predicted value, Mit ≈ 0, are the

least likely to switch industries. Calculating the average layoff share for the same binned

group of earnings deviation results in a similar pattern.

Together, these two patterns yield two key insights. First, both firms and workers correct

bad matches ex-post. This suggests that a large mismatch is costly for both parties, lead-

ing to separations initiated by either the worker (industry switching patterns) or the firm

(layoff patterns).

Second, the very existence of these poor matches, which dissolve more quickly, suggests

that it is difficult for workers and firms to assess match quality before the match. Firms

and workers would only form “good” matches in the center of the distribution if informa-

tion were perfectly known beforehand. The matches formed at the two extremes indicate

a process of trial and error, and the high separation rates at the two extremes are evidence

of the market correcting matching errors that are only revealed on the job.

From these results, I hypothesize that Mit captures an idea of qualification for individu-

als with industry j at time t. A negative Mit indicates that individual i is overqualified at

year t, providing more incentive to endogeneously switch to a different industry. Conse-

quently, firms might find a frustrated and unhappy worker unfit for the job and lay them

off. Whereas a positive Mit is associated with underqualification, and it is in the best
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Figure 2: Industry Switching and Layoff Probability by Mi,t−1

Notes: The left axis (blue line) shows the industry switching probability, including EE (employment-to-employment) and EUE
(employment-unemployment-employment) transitions. The right axis (red line) displays the layoff probability from the job, as
recorded in the Employment Insurance dataset. The unemployment benchmark line indicates the industry switching rate for
individuals who experienced unemployment (UE). Residual earnings (Mi,t−1) are binned into quintiles (each bin represents 5
percentiles); bin 45 includes the group with residuals equal to zero.
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interest of the firm to lay off that worker in search of a more productive worker, and for

the worker themselves to locate to a more suitable job for their skills. This bilateral con-

sensus on which matches to keep will support a key assumption of the market structure

in the model.

2.4.2 Fact 2: The Variance of Mismatch Declines With Industry Tenure and Increases
With Years Since Graduation

From Fact 1, I establish that Mit is a good measure of match quality, with values near 0

being better than large deviations from 0. I have not yet established any potential mecha-

nism that could help individuals and firms self-select out of a bad match and confirm that

the current match is good enough. The hypothesis I bring in this paper is that workers

have imperfect information about their qualifications for each industry and take time to

learn about the qualifications.

To test that hypothesis, I look at the variance of Mit. The intuition is that if individ-

uals learn about their match quality over time, the uncertainty surrounding it should

decrease. Through which key mechanism does the uncertainty decrease depend on sub-

group behavior differences over time.

The data strongly suggest that workers learn about their match quality over time. As

shown in Figure 3, the variance of Mit falls by 58% within the first five years of continuous

industry tenure. This suggests that as workers accumulate experience in an industry, poor

matches are either improved or dissolved, leading to a convergence of outcomes among

industry stayers.

Critically, the learning process appears to be industry-specific. In sharp contrast to the

effect of tenure, the variance of Mit rises steadily during the entire duration of early ca-

reers of the workers (see the right axis). Read together, these opposing trends imply that

learning does not generalize across industries; when a worker switches, the learning pro-

cess resets. This dynamic of trial, error, and industry-specific learning helps explain why

significant earnings disparities can persist long after graduation.

2.4.3 Fact 3: Major Choice Corresponds to a Choice of Career Mobility and Uncer-
tainty

I now turn to investigate whether the intensity of this “search and learn” process varies

systematically by fields of study. This is evident in Figure 4, which shows that the choice
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Figure 3: Variance of Mit Trend over Industry Tenure and Time Since Graduation
Notes: The variance of the earnings residual Mit is calculated cross-sectionally for each year, across all individuals from different
cohorts. The blue solid line shows the variance by years since graduation, while the red dotted line shows the variance by years
of continuous industry tenure.

of the major could also be an implicit choice about the degree of labor market uncertainty

a graduate will face.

Since the CIP codes are a much finer description of the majors, and we are limited by

reporting criteria from using administrative data, to demonstrate heterogeneities across

majors with transition paths, I aggregated to a coarser 1-digit ISCED-F major codes (with

a total of 10 majors) and looked at the transition shares for each major during the early

and late careers. I define early careers as the first 5 years after graduation and late careers

as the 9th-14th years after graduation. Figure 4 shows that the transition shares vary

systematically by college majors.

Graduates from more generalist majors, such as Arts and Humanities and Social Sciences,

exhibit the lowest stability and the highest rates of industry switching during continuous

employment. Their career paths involve more “shopping around”, suggesting they face

a wider, more uncertain set of industry match qualities. Surprisingly, this heightened

mobility persists, as they continue to exhibit a lower industry staying rate even at the

9th-14th year after graduation. This intensive switching represents a prolonged engage-

ment in the “search and learn” process detailed in Fact 2, compared to some other majors,

where graduates must repeatedly reset their industry-specific experience to find a suit-

14



able career throughout their lifetime.

Figure 4: Early Career Transition Patterns by Major
Notes: Majors are grouped at the 1-digit ISCED-F code, using the standard crosswalk from Statistics Canada to map between
4-digit ISCED-F and 6-digit CIP codes. Early career refers to the first five years after graduation, while late career stayers are
defined as those with 9–14 years of experience but still show substantial major heterogeneity, as seen in Figure B.3. Majors are
ranked from top to bottom using averaged earnings in the early career years in descending order, with “Health and welfare”
earning the highest on average, and “Arts and humanities” the lowest. Each row does not sum to one because exits from the
labor market are allowed; the observed exit rate is used to discipline the exit rate in the quantitative model. The numbers in
the bars represent the shares of individuals in each group. All transitions are characterized at the 3-digit industry NAICS code
level.

2.4.4 Ruling Out Mechanical Effects

A natural concern is whether the documented patterns are statistical artifacts of the esti-

mation method rather than evidence of mismatch and economic learning. Here, I argue

why this is not the case.

By construction, the OLS residuals have a mean of zero over the full estimation sam-

ple and are uncorrelated with the included regressors, such as tenure. However, these

properties do not mechanically generate the patterns I observe.

First of all, the OLS framework makes no prediction that individuals with large absolute
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residuals at any given time should be more likely to switch industries in the subsequent

year. This U-shaped relationship is a behavioral pattern similar to the notion of the U-

shape of occupational mobility, where both underqualified workers and overqualified

workers have a higher occupational switching rate (Groes et al., 2015). This U-shaped re-

lationship between the level of mismatch and the decision to change industries is not an

econometric byproduct. While serial correlation is clearly present from the empirical evi-

dence, it merely reflects the persistence of match quality over time, something I expected.

For example, a standard autoregressive process on the error term, e.g., an AR(1), simply

implies that a positive shock is likely to be followed by another positive shock. It does not

mechanically predict that individuals with very large shocks, either positive or negative,

will have a higher probability of exiting the state, which is the industry in my setting,

altogether. The observed fact that large, persistent mismatches trigger separations cor-

responds to the interpretation of the learning mechanism in economic structures, not a

statistical tautology.

Similarly, OLS does not guarantee the variance for the subsample of “industry stayers”

to decline with tenure. The sharp drop in variance for this group, especially when con-

trasted with the rising variance for the full sample of graduates, points to a powerful

selection and learning mechanism unique to continuous employment, and not a general

property of residuals. Moreover, one might argue that this is merely tenure-dependent

heteroskedasticity, reflecting that the variance of the true unobserved error term differs

across groups. This critique, however, is not a rebuttal but rather a statistical reframing of

my central economic argument. The hypothesis is that tenure facilitates learning, which

reduces uncertainty about the quality of the match in the current employment. If match

quality is a key component of the unobserved error term, then a reduction in uncertainty

is a reduction in the error variance for that individual. Therefore, tenure-dependent het-

eroskedasticity is precisely the statistical property one would expect from an economic

model of learning.

Taken together, all empirical results from this section paint a clear and coherent picture.

The labor market for recent graduates is characterized by significant information friction

regarding their individual-industry specific match quality/productivity. The persistence

of mismatch, the U-shaped separation patterns, and the heterogeneity across majors all

underscore the importance of this learning mechanism in shaping career paths.
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2.5 Ability Predicts Major Choice but Not Industry Match Quality

I have shown that large earnings variation exists within major-industry cells. Next, I test

the primary alternative explanation: are these variations driven by pre-existing differ-

ences in inherent ability, rather than post-entry learning? The central hypothesis is that

if the mismatch we characterized and observed in the previous section is merely a proxy

for unobserved ability, then a direct measure of pre-market ability should predict better

matches. To assess this, I use the selected cohorts of Ontario public high schoolers from

the dataset. The results show that, while ability predicts major choice, it does not predict

match quality.

There are no aptitude test scores available to directly measure inherent ability in our

data. Therefore, I use administrative data on Grade 12 Mathematics and Language course

grades for the subset of students from Ontario high schools graduating in 2013/2014 to

2015/2016. These grades serve as a good proxy for pre-college ability. We know the

specific courses these students took and their corresponding letter grades for Language

and each Math course. In Ontario, students must complete Grade 12 courses in both

Mathematics (which can be broadly characterized by two difficulty levels) and language

(English or French). Critically, universities make admission decisions based on Grade 12

first-semester and second-semester midterm marks. While offers are conditional on final

performance, the sorting process is based on this interim, and therefore noisy, signal of

ability. In this analysis, I use the final, realized Grade 12 marks as the proxy for abil-

ity, which provides a more precise and comprehensive measure than the grades used in

university admission decisions.

I test whether this ability measure predicts sorting into better majors and labor market

matches. I use average earnings of college majors as the ranking basis, as is standard.

For labor market matches, I use two measures: (1) employment in a major’s top-paying

industry and (2) the magnitude of the mismatch, |Mit |. I estimate the following specifica-

tion:

Yit = α + βgGradeGroupi + δControlit +γm + ϵit (3)

Table 1 presents the results, proceeding in two clear steps.

First, column (1) shows that higher grades in Mathematics and Languages are linked to

choosing majors with higher average pay. Consequently, this validates that high school

letter grades can predict educational choices, as theory suggests. Furthermore, ability
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Table 1: Sorting Patterns between Inherent Ability and Outcomes

(1) (2) (3)

Dependent variable:
Avg Major
Earnings

I{Top 1
Industry}

Earnings
Deviation

(Math, Lang) = (A, A) 0.034*** 0.013 0.007
(-7.45) (-1.34) (-1.61)

(Math, Lang) = (A, B) 0.030*** -0.004 -0.000
(-7.00) (-0.44) (-0.04)

(Math, Lang) = (A, C) 0.029*** -0.014 -0.004
(-4.56) (-1.08) (-0.66)

(Math, Lang) = (B, A) 0.014** -0.003 0.010
(-2.79) (-0.28) (-1.88)

(Math, Lang) = (B, B) 0.010** 0.008 0.001
(-2.58) (-1.09) (-0.27)

(Math, Lang) = (B, C) 0.009* 0.001 -0.008
(-1.97) (-0.16) (-1.77)

(Math, Lang) = (C, A) -0.013 0.038** 0.024**
(-1.83) (-2.65) (-3.20)

(Math, Lang) = (C, B) -0.007 0.019* -0.004
(-1.62) (-2.38) (-0.96)

(Math, Lang) = (C, C) — — —

Female -0.023*** -0.010*
(-10.62) (-2.23)

Constant 9.433*** 0.004 0.183***
(-151.45) (-0.03) (-27.31)

Controls Yes Yes No
Major FE No Yes No
N 16,000 41,000 41,000
R2 0.319 0.070 0.001
F 386.3 4.868 5.163

Notes: Coefficients with t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10. The base group is students with a
letter grade of C in both Mathematics and Language. Students must complete a 12th grade course in both subjects, hence
each student could be characterized by a pair of grades (Math, Lang). Control variables include university graduation
year, university institution, years since graduation, number of difficult math courses, gender, and high school graduation
year. The top 1 industry is ranked by average earnings among graduates of a given major at the population level. Results
are robust to alternative definitions of “top” industries, such as using the first quartile of average earnings or rankings
based on major-industry fixed effects obtained from Equation 1. Column (1) is estimated at the individual level, since
each person chooses their major only once. Columns (2) and (3) are estimated at the individual-year level, as they track
outcomes for each year after university graduation. Depending on the year each individual graduates, I can observe
them for different numbers of years. The sample size reflects the total number of observations across all years.
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sorting occurs between inherent ability and major choices.

Second, I test whether this same ability measure predicts a better subsequent industry

match. Columns (2) and (3) show that it does not. High school grades have almost no pre-

dictive power for whether individuals are employed in their major’s top-paying industry

in the first two years after university or in an industry with lower mismatch. Additional

robustness checks are in the Appendix B.6 Table B.4.

This finding is clear and powerful: high school performance predicts sorting into better-

paid majors but does not predict the quality of industry matches within those majors.

High-ability individuals are just as likely as others to begin in poor matches, showing that

underlying ability does not drive mismatches. These points strongly suggest a systematic

barrier of information frictions that prevents the positive assortative matching of talent

to industries. Another subtle implication is the effect on distribution to welfare changes.

Since sorting is imperfect, the distributional effects of resolving information frictions in

the labor market are substantial.

3 Further Identifying Information Friction

The prior sections establish that unexplained earnings variations are substantial, persis-

tent, and linked to career mobility, which is consistent with a model of learning under

uncertainty. In this section, I turn to direct causal evidence by testing whether an exoge-

nous increase in labor market information for the options for each individual can causally

affect match quality and alter career dynamics for recent graduates. Specifically, I exploit

the 2009 entry of LinkedIn into Canada as a natural experiment, applying a difference-in-

differences (DiD) strategy to compare majors with varying exposure to LinkedIn before

and after its introduction.

3.1 Empirical Strategy

Institutional Background Before discussing the empirical strategy in detail, I briefly

summarize the relevant features of LinkedIn’s platform and its expansion into Canada.

These features are critical to understanding the exogenous shock used for identification.

LinkedIn is a professional, employment-focused social media platform used ”to exchange

information, ideas and opportunities” (see initial launch screenshot in B.5). The company

began operating in the US in 2003 and quickly expanded internationally. Today, it has
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over 28 million users in Canada. Of those, 66.6% are between 18 and 34 (World Popula-

tion Review, 2025), which aligns exactly with the main sample of our analysis.

LinkedIn officially began operating in Canada on November 11th, 2009 by launching the

website “ca.linkedin.com”. The company set up its Toronto office on June 16th, 2010. Be-

fore this date, Canadians could create accounts, but the platform’s regional sorting made

it far less effective for the Canadian market11. Figure 5a uses Google Trends data to show

the interest in LinkedIn in Canada. It compares multiple keywords.12 A grey dashed

vertical line indicates LinkedIn’s launch in Canada. The figure shows that the Cana-

dian search interest for “LinkedIn Jobs” was non-existent before 2009 but grew rapidly

thereafter, quickly surpassing generic searches for “Available Jobs”. Given this sharp,

sudden increase in the interest in finding job opportunities on LinkedIn, I define the

post-treatment period as starting with the 2010 graduation cohort. The 2009 cohort is

the base.

Crucially, LinkedIn is fundamentally structured around industries, which is central to

this paper’s focus on industry-level sorting. The platform prompts users to select a pri-

mary industry and uses this information to filter and present candidates to recruiters.

This feature was present at launch, as shown in early interface screenshots (see Ap-

pendix B.6). This structure provides graduates with a more transparent and current view

of the labor market. It also makes career options more visible and comparable. The main

channel of influence is the reduction of market-level uncertainty about the broader set

of career opportunities.LinkedIn provides example career progressions found on other

users’ pages and job descriptions for each posting.

Justifying the Treatment and Control Groups Having established the institutional con-

text of LinkedIn’s entry into Canada, it is crucial to justify the selection of treatment and

control groups for the DiD analysis. The credibility of this design relies on the argument

that LinkedIn’s introduction had a different effect across majors. Through multiple con-

firmations, I argue that graduates from business majors (ISCED code 4: Business, Admin-
istration and Law) were more exposed to the platform than graduates from engineering

majors (ISCED code 7: Engineering, Manufacturing and Construction).

There are two sets of evidence. First, Figure 5b presents the Google Trends results com-

paring the two related keywords for the business graduates and new engineers. It shows
11See the bottom of the Figure B.5 for a screenshot of the website as it appeared when first published.
12The magnitude of Google Trends is a relative measure of search interest on a 0 — 100 scale. Here, 100 is the peak

popularity during a specific time and region. A value of 50 means the term is half as popular, and a value of 0 means not
enough data. I also included a comparison in Figure B.6 between “LinkedIn,” “Indeed,” and “Traffic” to show LinkedIn’s large
popularity in Canada.
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(a) LinkedIn Jobs vs Available Jobs (b) Management vs Manufacturing

Figure 5: Relative Google Search Intensity in Canada for LinkedIn Related Keywords.
Notes: Both figures display Google Trends data limited to Canada. Panel (a) compares the relative magnitude of search interest
between the keywords “Available Jobs” and “LinkedIn Jobs”. Panel (b) compares “LinkedIn Management” and “LinkedIn Manufac-
turing”, approximating jobs targeted by business versus engineering graduates. LinkedIn Engineering keywords primarily refer to
software engineering, so they are excluded since the sample omits software engineers. The dotted vertical gray line marks November
2009, when LinkedIn Canada launched. Values are relative within each panel and cannot be compared across panels for intensity.

that the search intensity for “LinkedIn Management” grew qualitatively identical to “LinkedIn”

in Canada, whereas “LinkedIn Manufacturing” barely had any effect.

Second, early in its expansion, LinkedIn’s network and job postings were heavily skewed

toward business, sales, and management roles. Technical and engineering positions, ex-

cept for software-related jobs, were less common. Often, they were limited to manage-

ment tracks.13

These two pieces of evidence demonstrate that LinkedIn’s initial value proposition was

concentrated in the business domain, making business majors the natural treatment group,

and engineering majors a credible control group.

To further strengthen the validity of the treatment and control groups and ensure a clean

comparison, I further refine the sample. I exclude individuals with software engineering

majors, as they are typically employed as computer scientists rather than traditional en-

gineers. I also remove graduates with Finance or Accounting and Finance majors, since

the 2009 recession disproportionately affected the financial industry, where most of these

graduates work. I address the confounding effects of the 2008-2009 Recession directly

in the next section. Finally, I restrict the earnings outcome to the first year after gradu-

ation. This avoids complications from differences in graduation timing, such as working

part-time, full-time, or holding a temporary job. I also focus on comparing cohorts, not

13Appendix B.6 contains pages of actual screenshots from the LinkedIn Canada site in early 2010 via Wayback Machine.
The job postings are much more focused on management roles in engineering categories, whereas business graduates see
postings that closely match their majors.
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individuals, to avoid confounding from different labor market experiences. The final

sample is a cross-sectional comparison of cohorts of individuals, such as marketing grad-

uates in 2008 and those in 2012. Table 2 presents the shares of treatment and control

groups by post period.

Eliminating Potential Effect from Recession A primary threat to identification is the

effect of the Great Recession. Though Canada was less affected than the US, the down-

turn still impacted financial markets. To reduce the recession’s potential effect, I take

two steps. First, I restrict the analysis to graduates from Alberta universities who stayed

and work in Alberta. Alberta’s economy focuses more on the energy sector than finance,

insulating it from most crisis shocks. Second, I control for remaining local business cycle

effects. Specifically, I use the industry-year unemployment rate (UnemploymentRatejc),

measured as the share of individuals who separated to unemployment from the previous

year for each industry.

Table 2: Shares (%) by Treatment and Post

Post

Treatment 0 1 Total

Control: Engineering 14% 19% 33%
Treatment: Business 25% 42% 67%

Total 39% 61% 100%

Now we are ready to estimate the specification. I estimate the causal effect of information

using the following Difference-in-Differences specification:

Yimjc = α + βPostc ·Treatmentimjc +λc +λm +λj + UnemploymentRatejc + ϵimjc (4)

where Yimjc is the outcome variable for an individual i chose to be in major m, graduated

in cohort c and go on to be employed in industry j. Postc is a binary indicator for the post-

treatment period, which is 1 if the individual graduated in 2010 or later. HighInfoimjc is

a binary indicator for being in majors that are more exposed to LinkedIn, as defined

previously. The coefficient β captures the differential changes in the outcomes between

the treatment and control groups after being exposed to more information. We further

control for cohort fixed effects λc, major fixed effects λm at the two-digit CIP code level,

and industry fixed effects λj at the two-digit NAICS code level to account for common

time trends as well as initial heterogeneity across cohorts, majors, and industries. We
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include the unemployment rate at the industry-year level UnemploymentRatejc to control

for the business cycle effect. ϵimjc is the i.i.d error term, clustered at the major-industry

level.

The main outcomes of interest are the individual-level deviation from expected earnings,

the duration in the first industry after graduation (measured in years), the probability

of being laid off or receiving Employment Insurance, and whether the individual ever

switches industry.

Event Study Framework To assess the dynamics of the treatment effect and ensure the

robustness of the previous estimation, I also estimate a dynamic event study framework,

as shown in Equation 5, with cohort 2009 as the base.

Yimjc = α+
4∑

τ=−5,τ,−1

βτPost2010+k ·Treatmentimjc+λm+λj+UnemploymentRatejc+ϵimjc (5)

Identifying Assumption The key identifying assumption for coefficients βτ is that, con-

ditional on controls, the outcomes for business and engineering graduates would have

followed parallel trends in the absence of LinkedIn. The event study allows me to test

this: the pre-treatment coefficients βτ should be statistically insignificant around 0 for τ

between 2005 and 2009. All outcomes of interest have flat and insignificant pre-trends,

providing strong support for this assumption. See the event study plot in Appendix B.6.

3.2 Empirical Findings

Because I cannot observe which specific graduates used LinkedIn, the DiD specification

estimates an Intent-to-Treat (ITT) effect. The estimates capture the impact of graduating

with a major that gained improved access to the platform, not the effect of using the

platform itself. Under the standard assumption of monotonicity, where the introduction

of LinkedIn did not cause anyone to stop using it, the ITT effect provides a lower bound

for the average treatment effect on the “compliers”, graduates who were induced to use

LinkedIn because of its Canadian launch. Therefore, the true effect of the platform on its

users is likely even larger than the estimates presented here.

Table 3 presents the main DiD results from estimating Equation 4. The results tell a co-

hesive story about how information frictions operate, a story best understood through
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the lens of two distinct types of uncertainty: a learnable uncertainty about the produc-

tivity or quality of one’s current match, and a market-level uncertainty about the value

of outside options. LinkedIn primarily impacts the latter, as it is a platform provid-

ing market-level information and information regarding outside options for graduates

with business-related majors. Specifically, better information shapes career outcomes,

demonstrated primarily through three outcomes: improving initial search, accelerating

the correction of bad matches, and increasing productive mobility.

Table 3: Difference in Differences Point Estimates

(1) (2) (3) (4) (5)

Dependent
variable

Earnings
Deviation

First Ind. Duration
Before Switching

Ever
Switched

Ever Received
EI

Ever
Laid Off

Post × Treatment -0.245*** -0.324*** 0.0423** -0.0751*** -0.0358**
( -6.19 ) ( -3.50 ) ( -3.08 ) ( -4.71 ) ( -2.76 )

Post 0.170*** -0.335*** -0.0884*** -0.0906*** 0.0134
( -4.18 ) ( -4.17 ) ( -7.61 ) ( -6.71 ) ( -1.22 )

Treatment -0.166*** -0.240 -0.0194 -0.0201 -0.139
( -4.96 ) ( -0.33 ) ( -0.17 ) ( -0.15 ) ( -1.28 )

Unemp. Ratejt 2.290*** -3.738** 0.728*** -0.179** -0.0382
(-11.89 ) ( -3.23 ) (-12.32 ) ( -2.60 ) ( -0.68 )

Cohort FE No Yes Yes Yes Yes
Major FE No Yes Yes Yes Yes
Industry FE No Yes Yes Yes Yes
N 19,000 15,000 19,000 19,000 19,000
R2 0.051 0.057 0.030 0.026 0.004

Notes: Coefficients with t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10. The total number
of observations is rounded to the nearest 1,000 to satisfy reporting guidelines. The outcomes for columns
(3) to (5) are binary and defined at the individual level throughout the entire observation window. Again,
as described above, the sample is excluded at the individual level, and the earnings outcome is restricted
to the first year after graduation.

Improving Initial Match Quality The platform’s primary effect is to reduce uncertainty

about the set of available jobs, allowing for better initial choices. Column (1) of Table 3

shows that for treated majors, the initial absolute earnings mismatch Mit decreases by

0.245 standard deviations after the arrival of LinkedIn. This suggests that the platform

improved search efficiency, allowing graduates to find better-fitting jobs straight out of

university. The effect is immediate and persistent, as shown by the event study in Fig-

ure B.8a. This suggests that by making outside options more transparent, LinkedIn im-

proved search efficiency, allowing graduates to find better-fitting jobs from the start. This
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does not change the on-the-job learning process itself, but it provides a much better start-

ing point.

Accelerated Correction of Bad Matches and Career Sorting. LinkedIn’s impact on ca-

reer further highlights its role in resolving uncertainty about outside options, not the

current employment.

First, better information allows for a faster correction of mistakes. Column (2) shows that,

conditional on switching industries, treated graduates stay 0.324 fewer years nearly four

months) in their first industry. This suggests that when an industry match is revealed to

be poor through on-the-job experience, reduced uncertainty about the existence of better

alternatives allows graduates to act on that knowledge and enables them to switch out of

a bad match sooner if they are in one.

Second, better information encourages productive mobility: by reducing uncertainty in

outside options, LinkedIn reduces the likelihood of graduates getting “stuck” in mediocre

but acceptable jobs. Column (3) suggests that the improved transparency of outside op-

tions provided by LinkedIn allowed business graduates to recognize better opportunities

outside their current employment, resulting in a 4.3 percentage point higher probability

of ever switching industries. Reassuringly, this increased mobility leads to better out-

comes. According to columns (4) and (5), the graduates were 7.5 percentage points less

likely to receive EI and 3.6 percentage points less likely to be laid off, indicating they

ultimately sort into more stable, higher-quality matches.

Finally, a survival analysis confirms this mechanism. The duration in the first industry

is a censored variable, as it can only be measured for individuals who eventually switch

industries. We estimate a Cox proportional hazards model using the same control vari-

ables and clustering as in the previous section. While the overall hazard rate of switching

rises, for individuals who are already in a good initial match, defined as within the bot-

tom 25th percentile of absolute mismatch, the hazard rate of switching decreases by 10%

before and after the policy for the treated group relative to the control group. This syn-

thesizes the story perfectly: clarifying market-level uncertainty allows workers to confi-

dently leave bad or mediocre jobs sooner and empowers them to recognize and commit

to good jobs more quickly.

Summary Notes The empirical evidence paints a clear picture of a labor market shaped

by significant information frictions. While these facts identify the core mechanism and

highlight its large impact on the labor market, a structural model is necessary to quantify
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its aggregate consequences and conduct counterfactual analysis. The empirical findings

directly inform the model’s structure in several ways.

First, the observed U-shaped industry switching patterns based on previous match qual-

ity motivate a model with ex-ante unknown match quality. Workers and firms do not

fully understand the match results, which can lead to a loss in output. Second, the op-

posing trends in mismatch variance over tenure versus number of years in the labor mar-

ket reveal industry-specific learning: learning happens only while employed and resets

upon industry switches. Third, heterogeneity across majors in labor market transition

outcomes suggests that major choices should capture varying levels of information fric-

tions. Finally, the fact that innate ability fails to predict match quality indicates that this

uncertainty is universal, independent of innate ability.

The LinkedIn experiment shows two key types of information frictions to model. First,

workers face uncertainty about their fit with jobs in their industry, which they learn over

time. Second, there is steady uncertainty about outside options by major, which does

not resolve with experience. LinkedIn helped by lowering this second uncertainty for

some majors, speeding up exits from poor matches, and improving career sorting. These

insights guide the structural model in the next section. I am now ready to set up the

model.

4 Model

I now develop a theoretical model of search, learning, and college major choices to explain

the above empirical patterns of industry mobility and earnings inequality. The main

mechanisms we are interested in exploring are the effect of learning interacting with

labor market frictions.

4.1 Environment

Time is continuous and infinite. The labor market in this model is similar to Baley et al.

(2022) and Carrillo-Tudela and Visschers (2023).

Demography There is a fixed measure of individuals that evolves as in a perpetual

youth model à la Blanchard (1985) where workers exit with an exogenous rate ν. Ex-

iting workers of all periods are replaced by the same measure of new entrants starting
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from period 0. Individuals are born with inherent ability p that is observed perfectly by

the individuals (and firms once they enter the labor market).

Labor Market Belief Individuals receive a vector of industry specific skills after gradu-

ating from a certain major. This vector is unknown to the individuals, but they can learn

the value for the industry they are employed in with noisy signals. I will explain these in

detail in section 4.2.

Labor Market The labor market consists of perfectly segmented submarkets, denoted

by

(m,p, j,a,Σ, r) ∈N3 ×R2 ×N

which represents the major, worker innate ability, industry, current mean belief, current

belief variance, and level of job rung, respectively. Workers are born with heterogeneous

innate ability p. Before a worker enters into the labor market, they choose a major m.

Only (j,a,Σ, r) can be changed by the worker while they are in the labor market.

Major Choice Individuals choose a major m one period before the beginning of their

life. This irreversible choice is made by drawing from a distribution of preferences over

majors and an expected lifetime utility from each major. Each individual enters the labor

market unemployed. More details are described in section 4.3.

Production Technology Firms have log linear production technology using only labor

as input. The production function explicitly requires specific skill to be met in order to

produce output without any penalty. There are two types of production skill require-

ments: (1) the job ladder, chosen mutually by the firm and the worker, and (2) additional

skill requirements that are common to all major-industry pairs in the economy. Thus, my

model predicted mismatch will originate from the negative (not enough skill) or positive

(too much skill) deviations from the required skill level. The production function is given

by:

lny = lnAmp + η (rφ) − 1
2

(
λ+(r)[rφ− pa]2

+ +λ−(r)[rφ− pa]2
−

)
(6)

Short Summary To illustrate intuitively, Figure 6 provides a succinct flow chart of the

model from birth to exit. Each individual, born with an innate ability p, starts their life
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Figure 6: Illustrative Flow diagram of the life cycle of an individual in the model

by choosing a major m. They then enter the labor market unemployed in an industry j

randomly uniformly. After entering the labor market, they will navigate the labor market

frictions, learning, and job ladder climbing until they receive an exogenous exit shock σ

and exit the labor market permanently. While in the labor market, individuals transition

between employment and unemployment states, as summarized in Figure 7. For illustra-

tion purpose, I omit exogenous shocks of separation and industry switching in the flow

chart.

Figure 7: Illustration of Labor Market Transitions Absent Exogenous Shocks
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4.2 Belief Dynamics

All beliefs are public information to both workers and firms. For each individual graduat-

ing from major m, all graduates have the same prior aijm ∼N (am0,Σm0). These beliefs are

updated during the production stage when firms and workers update their belief about

the unobserved part of the utilitized skill, ai,j , conditional on the observed utilitized skill

pi and the college major mi of the worker. The updating process is on the basis of the

noisy signal li,j and assumed to be following a continuous time Normal-Normal Bayesian

updating process.

d li,j(t) = ai,jdt +µdWi,j(t) (7)

where Wi,j(t) is a standard Brownian motion.

Let âi,j be the posterior mean of the unobserved skill ai,j and Σi,j be the posterior variance.

Such assumed process implies that the posterior moments follow a diffusion given by the

standard Kalman-Bucy filter.

dâi,j(t) =
Σi,j

µ2 d li,j(t)− âi,jdt (8)

dΣi,j(t) = −
(
Σi,j

µ

)2

dt (9)

4.3 Major Choice

Each new cohort has the same measure as the exiting cohort, with each individual draw-

ing an innate ability type p from the distribution Fp(p̃). For simplicity, I assume all grad-

uates begin their careers by randomly entering unemployment in an industry j, with

probability determined by the major-specific industry shares. In addition, each individ-

ual i experiences a Frechet-distributed preference shock kim ∼ exp(−k−ν) over majors m.

Therefore, individuals choose majors to maximize their expected lifetime utility, start-

ing from unemployment with initial beliefs. Individuals are randomly allocated to an

industry j with probability ξj . This expected lifetime utility is denoted by Ū (m,p).
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The major choice problem can be written as follows:

max
m

kimŪ (m,p) (10)

s.t. Ū (m,p) =
∑
j

ξjU (m,p, j,am0,Σm0) (11)

Since kim is a Frechet distributed preference shock, the major choice problem can be

solved analytically to yield an ability p specific major share sm(p):

sm(p) =
U (m,p)

ν∑M
m′=1U (m′,p)

ν (12)

4.4 Vacant Match Value Functions

The value of an unfilled vacancy created by a firm in submarket is:

Vt(m,p, j, â,Σ, r) = −c(m,p) + max
x

q(θt(m,p, j, â,Σ, r)) {Jt(m,p, j, â,Σ, r)− x} (13)

where x is the promised lifetime utility contracted by this vacancy. Note that because the

contract is at lifetime utility, vacancy creation does not involve any expectation terms of

future utility. In equilibrium with free entry, I have the following Free-Entry Condition:

p(θ)
θ

(
Jt(m,p, j, â,Σ, r)− x

)
= c(m,p) (14)

The above condition creates a mapping between market tightness and firm surplus, and

the intersection with the worker value function will determine the equilibrium market

tightness. Below when I set out the unemployed and employed match value functions,

I will omit submarket index m and p for cleaner notation since they are not a choice

variable anymore at the labor market stage. The implication is workers cannot change

their major once they enter the labor market and their innate ability is fixed once they are

born.

4.5 Unemployed Matches

Unemployed workers receive flow benefit b and choose optimal job rung r and contract x.

They are matched in their chosen submarket with probability p(θt(j, âj ,Σ, r)). At Poisson
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rate ϵ, workers experience an exogenous industry switch, resetting their beliefs.

(ρ+ σ )Ut(j, âj ,Σ) = b+max
x,r

{
p(θt(j, âj ,Σ, r))

[
x −Ut(j, âj ,Σ)

]}
+ ϵ

[∑
j

pjUt(k,am0,Σm0)−Ut(j, âj ,Σ)
] (15)

Moreover, workers can endogenously switch to a different industry if optimal. Including

endogenous switching by workers, the maximization problem is:

Ut(j, âj ,Σ) = max{max
k

Ut(k,am0,Σm0),Ut(j, âj ,Σ)} (16)

Unemployed individuals can search across all industries k ∈ J and for the industry j they

are currently unemployed in, they could optimally choose which job rung r to apply for.

4.6 Workers Value Functions

The worker’s Bellman equation for a worker in industry j with current belief âj and Σ is

laid out in Equation 17.

(ρ+ σ )Jact
t (j, âj ,Σ, r) = eη(rφmj )

E

[
e−max{(rφmj )−paj ,0}

]
+Λt(j, âj ,Σ, r)

+ max
x′ ,r ′

{
κp(θt(j, âj ,Σ, r

′))
(
x′ − Jt(j, âj ,Σ, r ′)

)}
+ δ

(
Ut(j, âj ,Σ)− Jt(j, âj ,Σ, r)

)
+ ϵ

∑
k

pkUt(k, âm0,Σm0)− Jt(j, âj ,Σ, r)


(17)

The first term corresponds to the expectation over flow output y. The second term sum-

marizes the impact of learning to match value, which is any changes to Jt as a result of

time as in Equation 18. Appendix C.3.1 provides details in discretizing this learning

process.

Λ ≡ ∂J
∂t

=
∂
∂Σ

(
Σ

µ

)2

+
1
2

(
Σ

µ

)2
∂J

∂a2 (18)

The third term summarizes the net gain from on-the-job search, where employed indi-

viduals can search at rate κ on another lifetime utility contract x and job rung r within
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the same industry j. The fourth term is the net loss from exogenous separation, and the

last term summarizes exogenous switching shock to another industry and start with the

initial belief. At each instance, workers can endogenously separate into unemployment

whenever it is mutually beneficial for both firms and workers as shown in Menzio and

Shi (2011). Therefore, the unconditional maximization problem can be expressed as:

Jt(ω
r
k) = max

{
Jact
t (ωr

k),Ut(ωk)
}

(19)

Note that individuals are not allowed to endogenously switch industries while employed.

Should they want to switch to a different industry, they must first separate into unem-

ployment and then re-enter the labor market in the new industry.

4.7 Wages Without Commitment by Workers

The computation of wages follows closely the results established in Schaal (2017). In

particular, I adopt the unique wage scheme such that the equilibrium search policy com-

pletely coincides with the ones established in the previous setup. Let wt denote the wage

offered to workers in period t, and Wt be the expected lifetime utility. In a competitive

labor market where contracts are complete and transferable as assumed in my environ-

ment, all rents are driven out, and the firm in equilibrium receives no profit. Therefore,

entering firms choose a contract that minimizes the per-hiring cost for each individual,

which is the difference between the contract utility posted, x, and the expected cost of

posting that vacancy before filled, c
q(θ) .

4.8 Equilibrium

The equilibrium of the model is two-staged. In the first stage, individuals choose their

major based on their expected lifetime utility from each major and a Frechet-distributed

preference shock. In the second stage, I rely on the Block Recursive Equilibrium to solve

for the labor market equilibrium given the major choice from the first stage.

The equilibrium in the labor market that I focus on is the Block Recursive Equilibrium

(established in Menzio and Shi (2010, 2011)) and can be defined as follows, conditional

on the major and innate ability of the worker:

• A market tightness function θ : J ×A×S ×R→R+
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• Unmatched value functions U : J ×A×S →R

• Matched value function J : J ×A×S ×R→R

such that these functions satisfy: (i) All functions are independent of aggregate states; (ii)

Bellman equations are satisfied for all values taken by the functions; and (iii) Firms have

free entry condition.

Then, after solving the labor market equilibrium, I can solve for the optimal major alloca-

tion of workers by utilizing the nice properties of Frechet distributed preference shocks.

The equilibrium major allocation is given by the following equation:

sm(p) =
U ∗(m,p)

ν∑M
m′=1U ∗(m′,p)

ν (20)

The computation of steady state distribution of workers is discussed in the next subsec-

tion.

4.9 Kolmogorov Forward Equation

The setup of the Kolmogorov Forward Equations is fairly standard, with slight modifica-

tions to incorporate learning, directed search across industries, on-the-job ladder climb-

ing, and exogenous entry and exit of the population.

Let me begin after workers have already chosen their majors. At this point, each indi-

vidual treats their own major and ability type as given. Therefore, all transitions occur

between submarkets denoted by (j,aj ,Σj), given the major and ability (m,p).

Let pU (·) and pE(·) denote the job finding rates for unemployed and employed workers,

respectively, as specified by the model. The Kolmogorov Forward Equation (KFE) can

then be defined as follows.

Active Employment The distribution over active employment, Γt(k, âk ,Σk , r), is charac-

terized by the following PDE:

Γ̇t(k, âk ,Σk , r) = Γ̇ Learn
t (k, âk ,Σk , r) + Γ̇ EE

t (k, âk ,Σk , r) + Γ̇ UE
t (k, âk ,Σk , r)

− Γ̇ EU
t (k, âk ,Σk , r)− Γ̇ Exit

t (21)
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The first term, Γ̇ Learn
t (k, âk ,Σk , r), captures net changes due to learning about ability and

moving to a different submarket as beliefs are updated. In the quantitative estimation, I

use forward differences with a boundary condition of 0 to approximate the first deriva-

tive, and central differences with Dirichlet boundary conditions for the second derivative.

This term reflects the impact of learning for job stayers; thus, Γ̇ Learn
t only concerns changes

in Σk and âk, while keeping industry j and job rung r fixed.

Γ̇ Learn
t

(
k, âk ,Σk , r

)
=

( ∂
∂Σ

+
1
2

∂2

∂â2

)[(
Σ
µ

)2
Γt

(
k, âk ,Σk , r

)]
(22)

The second term, Γ̇ EE
t (k, âk ,Σk , r), captures net changes from on-the-job search transitions

within the same industry but across different job rungs. Thus, Γ EE
t only involves changes

in job rung r, keeping industry k and beliefs (âk ,Σk) fixed.

Γ̇ EE
t

(
k, âk ,Σk , r

)
= −pE

(
k, âk ,Σk , r, z

)
Γt

(
k, âk ,Σk , r

)
+
∑
r ′∈R

pE
(
âk ,Σk , r

′, z
)
Γt

(
âk ,Σk , r

′
)

1r ′→r (âk ,Σk ,z).

(23)

The third term, Γ̇ UE
t (k, âk ,Σk , r), captures transitions from unemployment to employment

within the same industry k. This change only includes individuals who successfully

match with a job while unemployed, and thus depends on the unemployment distribu-

tion Υt.

Γ̇ UE
t

(
k, âk ,Σk , r

)
= pU

(
k, âk ,Σk , r, z

)
Υt

(
k, âk ,Σk , r

)
1r→r∗ (âk ,Σk ,z) (24)

The fourth term, Γ̇ EU
t (k, âk ,Σk , r), captures both endogenous and exogenous transitions

from employment to unemployment. Specifically, it includes exogenous separation shocks

and endogenous separation choices. For endogenous separations, the outflow rate is ∞
as long as Γt

(
âk ,Σk , r

)
, 0, so the only possible limit is Γt

(
âk ,Σk , r

)
= 0 for those states. In

quantitative estimation, I approximate this limit with a large but finite π. This term cap-

tures the loss of job rung r, but individuals remain in the same industry k with beliefs

(âk ,Σk).

34



Γ̇ EU
t

(
k, âk ,Σk , r

)
=

(
δ+ lim

π→∞
πχsep

(
âk ,Σk , r, z

))
Γt

(
âk ,Σk , r

)
(25)

The fifth term captures exogenous switching and exiting from the labor market. This

term represents a total loss of state: individuals lose their current industry, beliefs, and

job rung. There is no inflow from exogenous switching, as I assume exogenous switching

only leads to unemployment in the new state space.

Γ̇ Exit
t (k, âk ,Σk , r) = (ϵ+ σ )Γt(k, âk ,Σk , r) (26)

The last term captures the exogenous allocation of newborn workers into the labor mar-

ket. I assume they are randomly assigned to an initial industry k with initial beliefs.

Unemployed Workers The distribution over unemployed workers, Υt(ωk), is character-

ized by the following PDE:

Υ̇t(ωk) = Υ̇ Switch
t (ωk) + Υ̇ EU

t (ωk)− Υ̇ UE
t (ωk)− Υ̇ Exit

t (ωk) (27)

Here, Υ̇ Switch
t (ωk) denotes net changes in the unemployment distribution due to exoge-

nous and endogenous industry switching. Unlike the employment distribution, the un-

employment distribution tracks both outflows at Poisson rate ϵ from the current state

and inflows from all other state spaces to the state with reset beliefs, specifically from

industries j , k at rate ϵpk|j .

Υ̇ Switch
t (k, âk ,Σk) =−

(
ϵ+ lim

π→∞
πρswitch(k, âk ,Σk)

)
Υt(k, âk ,Σk)

+
∑
j,k

∫ ∫ [
ϵpk|j + lim

π→∞
πρnew(j,a′,Σ′)

]
d(a′,Σ′)Υt(j,a

′,Σ′) · 1{(ak ,Σk) = (a0,S0)}

(28)

Here, ρswitch(ωk) ∈ {0,1} is the policy function indicating whether it is optimal for indi-

viduals to switch industries, i.e., ∃ j s.t. Ut(ωk) < Ut(ωj). The first term of Υ̇ Switch
t (ωk)

captures those switching out of the current state to a different industry, while the second

term captures individuals switching from other industries into industry k, both exoge-
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nously and endogenously. The distributional change due to employment-unemployment

transitions is given by

Υ̇ EU
t (k, âk ,Σk) =

∫
Γ̇ EUt (k, âk ,Σk , r)dr+

∑
j,k

∫ ∫ ∫
pk|jϵΓt(j,a

′,Σ′, r)d(a′,Σ′, r)·1{(ak ,Σk) = (a0,S0)}

(29)

The first term of Υ̇ EU
t (ωk) sums over all possible transitions to unemployment in the

current industry k, and the second term captures all individuals who exogenously switch

from other industries while employed. The distributional change due to unemployment-

employment transitions from successful job finding is given by:

Υ̇ UE
t (ωk) = pU (ωk)Υt(ωk) (30)

Lastly, the exogenous exit rate is:

Υ̇ Exit
t (k, âk ,Σk , r) = σΥt(k, âk ,Σk , r) (31)

The transition matrix is then constructed as:

TM =

Γ̇Learn − Γ̇EU + Γ̇EE − Γ̇Exit Γ̇UE

Υ̇EU Υ̇Switch − Υ̇UE − Υ̇ Exit
t

 (32)

Note that the sum of each column (source) is not zero by construction, due to exogenous

exits. Given exogenous entries of the same size, I solve for the ergodic distribution from

the following equation:

TM · g = Newborn (33)

where g is the ergodic distribution of workers across all states, and Newborn is the dis-

tribution of new entrants into each state of the labor market. Note that everyone enters

the labor market as unemployed; there is no mass of newborns for employed states. Since

there are no transitions between (m,p) once chosen, I can solve for the ergodic distribution

for each (m,p) pair separately and then stack them together to improve computational ef-

ficiency.

A key observation regarding the equilibrium and the optimal choices of job rungs are as
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follows:

Proposition 1. Given the production function in Equation (6), the optimal job choice r∗(m,j,a,Σ)

is unique and increasing in the belief of ability â.

Appendix C.1 provides detailed proof of the propositions and Appendix C.2 describes

the strategy to compute the equilibrium.

5 Estimation

I estimate the model using a coarser characterization of college majors and industries

than in the empirical section, both for computational reasons and to facilitate a clearer

interpretation of the mechanisms and quantification of effects.

For college majors, I first aggregate CIP codes to the 1-digit ISCED codes. I then select

the top three majors with the highest share of graduates: Social Sciences, Business, and

Engineering. For industries, I group the 3-digit NAICS codes to the 2-digit level and

combine the primary sectors (Agriculture, Forestry, Fishing and Hunting; Mining, Quar-

rying, and Oil and Gas Extraction; Utilities; Construction; and Manufacturing) into one

category called the Primary Sector. I then select the top three industries that hire the

most graduates from these majors: Finance, Public Administration, and the Primary Sec-

tor. For inherent abilities, I use high school letter grades in Math and Language courses

to group students. Based on the minimum criteria for a bachelor’s degree in Canada, I

restrict my attention to students who have either an A in both Math and Language or at

least a B in both subjects. I consider two ability groups: high ability (AA) and low ability

(AB, BA, BB). In total, I have two groups of students choosing among three majors and

sorting into three industries in the labor market. More details regarding the estimation

data are provided in Appendix D.

5.1 Estimation Strategy

Assigned Model Parameters I parameterize the model at an annual frequency, consis-

tent with the data. I set the discount rate ρ to log(1.05) to match a 5% annual discount

rate. The relative search intensity of employed workers, κ, is set to 0.5, consistent with

the relative search effort documented in Faberman et al. (2022) and Holzer (1987). The

annual exit probability is set to ensure an average working life of 45 years. This value
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is also a lower bound for the observed labor market exit rates for each major, as shown

in Figure 4. I set the exogenous industry switching rates, pk|j , to be uniform across all

industries. I do not target observed industry transitions because they are driven by many

factors not present in the model, such as firm-specific shocks and geographic moves. Tar-

geting these transitions would force the model to overstate the importance of exogenous

shocks, biasing the results. The distribution of innate ability, wp, is taken directly from

the observed grade distribution in the data. Table 4 summarizes the assigned parameters.

Table 4: Assigned Parameters

Parameter Description Value Source

ρ Discount rate log (1.05) Annual 5% interest
κ Switching cost 0.5000 Faberman et al. (2022)
σ Per-period exit probability 0.0222 Average 45 years of work-

ing
wp Distribution over p from

the economy
[0.2411, 0.7589] Normalized share of grade

distribution
pk|j Transition probability be-

tween industries k to j
Exogenous; Uniform

For the set of potential task complexities R, I use a 6-point grid over [0,2], normalized

by the standard deviation of the initial prior mean, âm0. Importantly, I include r = 0

as an entry-level rung to ensure that new graduates can find a match in any industry. I

approximate beliefs about worker skills using a 120-point grid for the mean, â, spanning

six standard deviations around âm0, and a 20-point grid for the variance, Σ, over [0,1],

also normalized by the initial variance. I verified that the results are robust to using finer

grids.

Estimated Parameters I estimate the remaining parameters jointly using the Simulated

Method of Moments (SMM). All model moments are computed from the model’s ergodic

distribution. To keep the estimation tractable, I impose structure on parameters that

vary across the state space, reducing the number of parameters while preserving key

information. Table 5 summarizes the estimated parameters.

For the vacancy posting cost, c(m,p), I assume it is constant across majors and abilities.

Similarly, I assume a single, economy-wide utility from non-employment, b. I further

impose structure on the major-industry specific productivity requirement, φmj , and the

major-ability specific productivity term, Amp (see Appendix D.2 for details). These pa-
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Table 5: Estimated Parameters

A: Estimated Parameters

Parameter Description Value

δ Separation rate 0.073
c Vacancy posting cost 0.376
γ Matching function parameter 1.45
η Returns to skill 0.33
b Unemployment utility 0.65
ν Preference parameter for majors 5.09
ε Exogenous career switching rate 0.017
µ Learning rate 9.23
λ+ Penalty on overqualification 0.66
λ− Penalty on underqualification 0.97

B: Parameters Varying Across Majors, Abilities, and Industries

Parameter Description Value

Amp Major–Ability productivity
k1m -0.06
Ap [1.61, 1.68]

φmj Major–Industry requirement
φ̄j [0.98,1.7,0.78]
βm -0.03

âm0 Major-specific initial belief about ability [0.28,0.1,0.41]
Σm0 Major-specific initial variance of belief [0.25,0.49,0.55]
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rameters are identified using major-industry and major-ability employment shares, re-

spectively.

Before matching them to the model, I residualize all earnings data by regressing log earn-

ings on institution, city of residence, and citizenship indicators to remove variation from

sources absent in my model. Since I am using tax data, I cannot distinguish between un-

employment and non-participation. I therefore treat all non-employed individuals as a

single state, which I refer to as non-employment (N).

I briefly summarize the mapping between the key parameters and their targeted moments

below. More details are provided in Appendix D.

Following the literature, I target worker flows into and out of non-employment to identify

the exogenous separation rate, δ, and the vacancy creation cost, c. I pin down the util-

ity from non-employment, b, by targeting a replacement ratio of 0.4 from Shimer (2004).

The parameters governing over- and under-qualification penalty, λ+ and λ− are estimated

by targeting the job-switching rates of workers with positive and negative mismatch val-

ues. The returns to skill, η, is identified using the ratio of the variance to the mean of

earnings. Finally, major-specific preference parameters are estimated by targeting the

observed shares of graduates in each major.

The key parameters for the model are the two sets of parameters that govern the learning

process and the information frictions present in the labor market. Specifically, they are

the signal noise µ, and the major-specific initial belief distributions {am0,Sm0} for each

major m. I outline the estimation strategy for these parameters next. In the model, µ

governs the speed at which individuals converge from the initial belief to the true match

value. A higher µ indicates that individuals receive noisier signals and take longer to learn

the true match value. To estimate µ, I use the empirical pattern of how mismatch declines

with industry tenure. The intuition is that the number of years it takes individuals, on

average, to become less varied in match quality should indicate how fast learning occurs.

Conditional on the learning speed, the mean of the initial distribution determines the

expected outside option of leaving the current industry. The higher this mean is, the

more likely individuals are to switch industries. To avoid any interaction effect between

learning and the mean am0, I use the empirical industry switching rate between the first

and second years after college graduation. When all individuals have noisy beliefs, the

switching rate should be determined mostly by the expected outside option, which is

determined by am0. The variance of the initial belief distribution captures how dispersed

individuals are around am0. Therefore, when individuals have accurate beliefs, the mass

that remains determines the size of the variance. See Figure D.9 for an illustration. Given
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the mean belief am0, endogenous industry switching is now completely captured by the

variation from Sm0.

5.2 Baseline Economy Estimation Results

The baseline economy is estimated using the procedure described above. Table 6 com-

pares the targeted moments in the data and the model. The model does a reasonably well

job at matching the baseline economy.

Table 6: Targeted Moments

Moment Data Model

Within-major share 0.96 0.85
Within-major btw-ind. share 0.08 0.09
NE rate (yearly) 0.63 0.51
EN rate (yearly) 0.07 0.09

Industry Switching Rate (Year 1)
Social Science 0.13 0.08
Engineering 0.11 0.06
Business 0.11 0.12

Industry Staying Rate (Year 6)
Social Science 0.42 0.65
Engineering 0.50 0.74
Business 0.55 0.49

Var(mismatch) ratio yr8/yr2 1.42 0.96
Var(mismatch) at y5 0.25 0.19
Replacement rate (b/E[y]) 0.40 0.40
V ar(y)/E[y|E] 0.03 0.03
share m1–p1 0.28 0.37

Employment Shares (Majors × Industries)
Primary Finance Public Primary Finance Public

Social Science 0.28 0.12 0.18 0.37 0.15 0.15
Engineering 0.23 0.03 0.15 0.07 0.05 0.08
Business 0.08 0.15 0.10 0.12 0.11 0.11
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6 Counterfactual Analysis

Characterizing the First Best Economy I start by characterizing the first-best economy,

which serves as an idealized benchmark absent any information frictions. To construct

this counterfactual, I hold major choices from the baseline economy fixed. I then assign

individuals to their most productive industry-rung pair based on their true industry-

specific skills, {aij} ∀j ∈ J . In this scenario, individuals know their true skills from the

start. They sort into their optimal positions, facing only search and matching frictions.

Figure 8 compares the average output per employee and average job rung in this first-best

economy to the baseline. It tracks a new cohort of workers over the first 30 years of their

career.

(a) Average Output (b) Average Rung

Figure 8: First Best Economy: Average Output and Rung

The results in Figure 8 reveal the significant and persistent costs of these information

frictions. Panel 8a shows that average output in the baseline economy starts substan-

tially below the first-best benchmark, represented by the green dotted line. Output in the

baseline never fully converges with the benchmark. The green line is constant, reflecting

the immediate optimal assignment of workers in a world without skill uncertainty. The

red line, which tracks “industry stayers” who likely found a good-enough initial match,

illustrates that even these workers underperform relative to the benchmark. This persis-

tent gap arises because the cost and uncertainty of switching lead some to settle in “good

enough” but ultimately suboptimal industries. The gap between the stayers (red line) and

the full cohort average (blue line) quantifies the additional output loss from workers who

start in poor matches and engage in costly learning over time.

The distortions are also evident in workers’ career progression, as shown in Panel 8b.
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On average, the cohort climbs to higher job rungs than is optimal in the first-best case.

This pattern reveals a key compensatory mechanism. To make up for a poor industry

match, workers climb higher on the internal job ladder than they otherwise would. In

contrast, “industry stayers”, being in better industry matches, have less need for this

compensatory climbing. Their average rung remains closer to the efficient first-best level.

This overshooting of the optimal rung is a clear and interesting distortionary consequence

of the initial mismatch caused by information frictions. Another key implication is that

the higher the job rung is, the less likely one is to separate from their suboptimal job.

This results in a persistent mismatch.

The model suggests two types of policy interventions could affect these outcomes. First,

accelerating the learning process would enable workers to recognize good matches and

move out of poor matches more rapidly, steepening initial productivity gains for the co-

hort. Second, increasing the transparency of outside opportunities would help workers

avoid settling for suboptimal positions, thus narrowing the output gap relative to the

first-best scenario. In the next subsection, I examine the specific effects of these interven-

tions in detail.

6.1 Varying the Speed of Learning

To quantify the importance of learning in the model, I conduct two counterfactual ex-

periments that alter the speed at which individuals learn about their major-specific abil-

ities. The key parameter controlling this speed is the signal noise, µ. By varying µ, I can

simulate economies with faster and slower learning, isolating its effect on sorting and

aggregate outcomes.

The baseline economy is characterized by a high estimated value of µ, indicating that in-

dividuals learn relatively slowly about their true industry fit. Starting from this baseline,

I simulate two scenarios:

Higher Speed of Learning I consider a counterfactual economy where individuals learn

four times faster. This is implemented by setting the signal noise parameter µfast =
1
4µbaseline and recalculate the equilibrium without recalibrating. In this scenario, the sig-

nals individuals receive about their productivity are much more informative, allowing

for a quicker resolution of uncertainty regarding their initial beliefs.
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No Learning In this scenario, I effectively eliminate learning. This is achieved by setting

µ to a very large value, which makes productivity signals almost entirely uninformative.

Under this calibration, an individual would learn only about 1% of their true match value

after a 45-year career, making their choices heavily dependent on their initial priors.

Figure 9: Major Share Allocation Difference

Figure 9 illustrates the steady-state changes in major allocation for both high- and low-

ability individuals under the two learning scenarios, relative to the baseline. The results

highlight that the speed of learning is a crucial determinant of sorting, particularly by

reallocating talent away from majors with low initial belief uncertainty.

In the fast-learning scenario, there is a significant reallocation of students out of Social

Science and into Engineering and Business. This effect is particularly strong for high-

ability individuals, who see a nearly 15% decrease in Social Science enrollment and a

greater than 10% increase in Engineering enrollment. This reallocation is explained by

the model’s initial parameter estimates. My estimates show that individuals begin with

high uncertainty as shown by large variance, Σm0 about their ability in Engineering and

Business, but are relatively certain about their Social Science ability. Faster learning al-

lows individuals to quickly resolve the uncertainty in high-variance majors. High-ability

individuals, upon receiving informative signals, discover they are a good fit for Engineer-

ing and Business and thus move away from the more certain but less productive for them,

Social Science major.

Conversely, in the no-learning scenario, the opposite occurs. Lacking informative sig-
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nals, individuals must rely on their initial priors. The high uncertainty associated with

Engineering and Business becomes a deterrent. Consequently, individuals sort into the

major they are most certain about: Social Science. This leads to an increase in the share of

Social Science majors and a decrease in Engineering and Business majors for both ability

groups.

Table 7: Equilibrium Outcomes: Steady State

Mean Output per Worker Unemployed Mass

Baseline 1.6352 0.24549
Fast Learn 1.6889 0.44639
No Learn 1.6240 0.27250

Table 7 shows the impact of learning speed on steady-state outcomes and the transitional

dynamics of output. It reveals that faster learning leads to a higher mean output per

worker compared to the baseline. This productivity gain stems from improved talent

allocation; individuals sort more efficiently into majors where they are genuinely more

productive. However, this improved sorting comes at the cost of higher unemployment.

Faster learning reveals low matches more quickly, leading more individuals to become

unemployed as they search for a better fit. The “No Learn” economy, by contrast, has the

lowest output per worker as poor sorting hinders productivity.

Table 8: Output Gap to Baseline (%)

Year 1 Year 10 Year 20 Year 30

Fast Learn 6.10% 1.93% 1.02% 0.73%

Table 8 examines the output gap between the “Fast Learn” scenario and the baseline over

time. We can see that faster learning makes initial output significantly higher towards

the first-best scenario. This initial surge is driven by the immediate reallocation of the

existing workforce based on more informative signals. However, as time progresses, the

output gap narrows. This convergence occurs because, over time, even in the baseline

scenario, individuals gradually learn about their true abilities and sort more efficiently.

Moreover, the outside options remain uncertain and unchanged across both scenarios,

limiting the long-term return to faster learning. Thus, while accelerating learning yields

substantial short-term productivity gains, its long-term effects are more muted as the

economy naturally moves towards better sorting over time.
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7 Conclusion

This paper investigates how information frictions distort the allocation of college grad-

uates to industries, leading to costly and persistent mismatch. I argue that uncertainty

about individual-industry skill fit is a primary driver of this misallocation. Graduates

enter the labor market with uncertain information through a process of trial and error,

and learn about their productivity over time. This dynamic learning process generates a

substantial and lasting mismatch.

My empirical analysis, using confidential Canadian administrative data, establishes three

key facts supporting this mechanism. First, there is a striking U-shaped relationship be-

tween a worker’s earnings residual—my measure of mismatch—and their probability of

switching industries, indicating that both over- and under-performance lead to separa-

tions. Second, this mismatch uncertainty is resolved through industry-specific tenure,

but the learning does not transfer across industries, forcing switchers to restart the pro-

cess. Third, the choice of major is also an implicit choice about the degree of career

uncertainty one is willing to face. I provide causal evidence for this mechanism by ex-

ploiting the entry of LinkedIn into Canada as a natural experiment. A difference-in-

differences design shows that improved access to labor market information led to better

initial matches, faster correction of poor matches, and more productive career mobility.

To quantify the aggregate costs of these frictions, I develop and calibrate a life-cycle di-

rected search model with Bayesian learning, major choice, and on-the-job search. The

model reveals that information frictions are costly: average output per worker at labor

market entry is 25% below the level in a first-best economy with perfect information.

This gap narrows but persists over the career, as unresolved uncertainty about outside op-

tions leads workers to remain in suboptimal but ”good-enough” matches. Counterfactual

exercises demonstrate that policies accelerating the learning process could significantly

reallocate talent toward majors with higher initial uncertainty but also higher potential

returns, particularly for high-ability individuals.

The findings underscore the economic value of institutions that reduce information fric-

tions. From a policy perspective, they suggest that interventions aimed at improving

career guidance could generate substantial welfare gains, especially since students are

responsive to public information about earnings (Wiswall and Zafar, 2015). The frame-

work also opens several avenues for future research. While the literature has established

that students self-select into majors based on expected returns (Kirkebøen et al., 2016),

my model introduces career uncertainty as a key, distinct dimension of this choice. Fu-
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ture work could explore how this uncertainty interacts with pre-existing differences in

risk preferences (Patnaik et al., 2020) or access to informal information networks—often

correlated with gender or socioeconomic background—to provide a richer narrative for

sorting patterns (Qiu, 2025). Furthermore, the model’s learning mechanism offers a nat-

ural laboratory for studying other labor market dynamics, such as the persistent scar-

ring effects of graduating into a recession (Kahn, 2010; von Wachter, 2020) or the role

of firm-level heterogeneity in resolving match uncertainty. The large quantitative cost

of mismatch identified in this paper demonstrates the critical importance of integrating

information frictions and learning into models of educational choice and the market for

high-skilled labor.
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Şahin, A., J. Song, G. Topa, and G. L. Violante (2014). Mismatch unemployment.

American Economic Review 104(11), 3529–3564.

52



Appendices

A Data Description and Cleaning

A.1 Post Secondary Student Information System (PSIS) Data

Description The PSIS contains information on all students who have attended a post-

secondary institution in Canada from the academic year 2009 onwards. Each cohort grad-

uated in 2009 onwards has roughly 450,000 graduates. The PSIS also contains students

from 2002 to 2008, inclusive. But these are inherited from Enhanced Student Information

System (ESIS), which does not contain the universe of Canadian post-secondary students

and have limited comparability to later standardized PSIS. The number of observations

is approximately one-fourth of the cohorts graduated in 2009 onwards.

We use the PSIS dataset to obtain information on individuals’ post-secondary educa-

tional information. This dataset is constructed directly from administrative data obtained

from each institution in Canada. Each institution must submit basic information to Statis-

tics Canada each year for each registered student regardless of graduation. Therefore, the

dataset is comprehensive and covers all students who have attended a post-secondary in-

stitution in Canada starting from 2009. This data contains an annual record for each stu-

dent registered that year. In particular, the dataset contains information on the student’s

major (standardized by Statistics Canada to the CIP codes), the institution attended, the

credentials obtained, enrollment year, and an indicator of graduation. However, it does

not contain information on courses and grades.

The main variables used for analysis from the PSIS are (1) majors, coded by the CIP

system; (2) the year of graduation, denoted by cohorts. The main variables used for anal-

ysis from the T1FF are (1) the industry of employment, coded by the NAIC, (2) the total

earnings in the tax year, and (3) parental total earnings. The PSIS contains demographic

information for each student such as age, gender, province of residence, and citizenship

status.
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A.2 T1 Family File (T1FF) Data

Description The T1 Family File (T1FF) contains individual tax return data, from 2000

to 2021. The T1FF contained in ELMLP contains all the students enrolled in the PSIS and

ever filed taxes in Canada.

The main variables used for analysis from the T1FF are (1) the industry of employment,

coded by the NAIC and derived from the business registration information, and (2) the

total earnings and wages in the tax year. The T1FF also contains detailed information

on the individual and family characteristics for tax purposes. All wages, earnings, and

benefits are deflated to 2002 dollars using the Consumer Price Index.

A.3 Ontario 9 to 12 (ON 9 to 12) Data

Description The Ontario 9 to 12 (ON 9 to 12) dataset contains administrative informa-

tion submitted by institutions to the Ontario Government in accordance to regulations.

This dataset includes information on basic student demographics and detailed informa-

tion on the highschool each student attended. Specifically, we used the subset that con-

tains the entries regarding information from 12th grade, which includes whether and

which Mathematics courses taken, and letter grades for each Math course taken and the

Language course taken.

The main variable used for the analysis is the level of difficulty of the Mathematics

courses taken, and the highest letter grade achieved within the level of difficulty. The

level of difficulty is coded as 1 for Math Courses that are more advanced versus 0 for less

advanced courses. The advancement of the courses are governed by the recomendation

of the Ontario Ministry of Education. We excluded special education and adult educa-

tion individuals and limit the analysis to those who graduated from a bachelor’s degree

between 2018 to 2020.

A.4 EISV Data for Unemployment Benefits

Description The Employment Insurance Status Vector (EISV) data contains informa-

tion on the unemployment insurance benefits received by individuals in Canada for each

application. Therefore, individuals can have multiple entries in a year if they applied for
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unemployment benefits multiple times. The EISV data contains information, among oth-

ers, on the reason for unemployment, the duration of unemployment benefits received,

and the amount of benefits received.

For EISV data, we use only the sample that could be linkable to the T1FF data via the

ELMLP. The EISV data contains information on the unemployment insurance benefits

received by individuals in Canada. The main variables used for analysis from the EISV

are the reason for unemployment and the duration of unemployment benefits received.

We use this information to define layoffs and exclude parental leave from the definition

of unemployment.

A.5 Estimation Sample and Restrictions

We subset the PSIS dataset as follows. We include only the highest degree for each

graduate - we followed the process recommended by Statistics Canada in identifying the

highest degree. If multiple degrees are obtained within the same year, we exclude the

students who studied in not-for-credit programs or military-specific programs (These are

roughly 2000 students in total). We include only graduates aged 18 to 35 at the year

of graduation. We also exclude the students who are not in the T1FF subset. These are

graduates who never filed any taxes in Canada, which is a direct indication that they

did not stay in Canada after graduation at all. We further exclude individuals who are

disabled or unemployed for the entire duration of the analysis (unemployment defined

below).

Conflicting Information across Datasets Any conflicting information recorded in both

datasets is resolved using the T1FF tax files. Since we are interested in tracking individ-

uals, we exclude anyone who filed taxes for fewer than two years after graduation. Each

individual is assigned a unique identifier to enable linkage across years and datasets.

Employment Status We define employment status for individuals by imputing from

the tax records. An individual is considered employed if they have positive salary in-

come in the tax year. Individuals are classified as self-employed if their share of self-

employment income is greater than 0.5. An individual is considered to have worked if

they are either self-employed, employed, or both. Self-employment is treated as a sepa-

rate industry in the analysis. Due to incentives to file taxes even when not in the labor
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force in Canada for benefits, unemployment must be defined separately. Individuals are

classified as unemployed if they have annual income lower than 8,000 CAD, or if they

received more than 8,000 CAD in employment insurance benefits. Therefore, we can

observe employment, unemployment, and non-employment.

Corrections to Industry Coding Individuals are coded to the industry based on the

NAIC code of the employer. For some years and some individuals, this information is

missing. In these cases, we first use the secondary industry code recorded in the dataset

if possible. If not, we use the industry code of the employer in the previous year if the

individual is employed in the year. If the industry code is also missing for the previous

year’s entry for that individual, we use the industry code of the following year. If the

individual is self-employed, we will overwrite the industry code, regardless of whether

there is an entry, with the self-employment code.

Switchers All switchers in this analysis are defined with respect to industries. Switch-

ers include both EE switchers (individuals who remain continuously employed but switch

industries) and EUE switchers (individuals who experience an employment gap and then

switch industries). As long as an individual switches industries between two employment

records, they are considered a switcher.

Analysis Level Selection The industry NAIC code in the dataset is at the 3-digit level,

and the CIP code is at the 6-digit level. To ensure sufficiently large subcategories to track

over time, we primarily use the 2-digit CIP code and the 3-digit NAIC code. As a supple-

mentary analysis, we also use the 4-digit CIP codes, and the results remain qualitatively

the same.

B Empirical Results Appendix

B.1 Earnings Variances Within College Major

We begin our analysis by examining changes in the variation of total earnings. Since our

earnings data are obtained from tax records, total earnings are defined as the sum of all

taxable income, including both business and employment income. We use total earnings

because self-employment is considered as one of the industries, allowing us to evaluate
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outcomes for a broader set of college graduates. All analyses of earnings inequality are

conducted at the cohort level and repeated for each cohort.

I decompose the variance of log earnings for each year since graduation, t, and for each

cohort, c, into between- and within-major components. Here, nm and wm represent the

share of individuals in major m and their corresponding average earnings, while w rep-

resents the average earnings of the entire economy. The within-major component dom-

inates, accounting for roughly 90% of the total variance. This suggests that most of the

variance among these post-secondary graduates arises not from the major they studied

but from other factors within the major.

Var(yijmct |c, t) = Var(yijmct − ȳmct)︸               ︷︷               ︸
80%

+Var(ȳmct − ȳct)︸           ︷︷           ︸
20%

(34)

=
∑
m

nm · (wm −w)2 +
∑
m

nm · (wim −wm)2

Further decomposing the within-major component into between- and within-industry

components reveals that major-industry matches explain more variance than the major

alone. In this decomposition, nmj and wmj represent the share of individuals in major m

and industry j and their corresponding average earnings.

Var(yijmct |c, t) = Var(yijmct − ȳjmct) + Var(ȳjmct − ȳmct) + Var(ȳmct − ȳct) (35)

=
∑
m

nm · (wm −w)2 +
∑
m

nm ·

∑
j

nmj ·
(
wmj −wj

)2
+
∑
j

nmj ·Var(wimj)



Outlier Majors in Variance Decomposition As shown in equation 34, the between-

major variance at the aggregate level is effectively the summation of the deviations of av-

erage earnings for each major from the cohort’s average earnings, weighted by the relative

size of the major. Therefore, it is important to understand if there exist outliers that drive

the results. I observe that the weighted between-major variance is quite persistent, and

the contributions among majors are generally similar, with one notable exception: med-

ical doctors after residency (CIP 60). These doctors after residency (approximately 150
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(a) Between-major variance share (b) Within-major variance share

Figure B.1: Shares of between-major and within-major variance over time

individuals per cohort) exihibit a very large between-major variance component. Con-

sequently, I exclude these individuals from the analysis. The numbers reported above

already account for the exclusion of medical doctors.

For other majors, the within-major variance completely dominates with some having in-

teresting trends over time given a cohort. For example, in business (CIP 52), within-

major variance is low in the first year after graduation but increases over time, while its

between-major variance is steadily small. In contrast, some majors, such as health-related

fields (CIP 51), display the opposite trend. Additionally, some majors, such as engineer-

ing (CIP 14), have within-major variances that are highly sensitive to business cycles.

Despite these fluctuations, the between-major variance remains remarkably stable across

cohorts and majors.

Individual Persistence Given the large within-major, within-industry variance, I fur-

ther examined individual earnings persistence over the entire observation period. If in-

dividual earnings variances are highly persistent, this suggests that significant skill differ-

ences or other individual-level factors, not captured by major or industry, may contribute

to the observed within-major and within-industry variance, reducing their prominence.

To investigate this, I first calculate the average lifetime earnings for each individual by

summing their annual earnings and averaging over the years they are employed. I then

take the log of these average earnings at the cohort-major level. The variance of these log

earnings is comparable in magnitude to the within-major variances, effectively smooth-

ing out individual annual shocks. These substantial variances, similar to the within-major

variances, indicate that individual earnings are highly persistent over time. When I in-

58



clude unemployed years in the calculations, the variances increase significantly.

B.2 Supplementary Variance Decomposition Results

Figure B.2a plots the time trend for the average total variance of raw log earnings for

each cohort, pooling all years since graduation available together. This trend is biased

downwards towards later cohorts because they only have the earlier results, which have

less variations among graduates.

Individual Persistence Given the large within-major within-industry variance, I fur-

ther looked at individual level persistence. If the individual variances are very persistent,

then the indication is that there might be large skill differences or other factors at the

individual level that are not captured by the major or industry.

In order to do so, I first calculate the average life-time earnings for each individual by

summing up earnings and averaging out on years that they are employed. I then take

the log of the average of these earnings at the cohort-major level. The variance of the

log earnings is comparable as the within major variances smoothing out individual an-

nual shocks. The variances are very large and are similar to the within-major variances,

suggesting that the individual earnings are very persistent. The variances computed by

including unemployed years are much larger.

B.2.1 Supplementary Raw Variance Decomposition

Figure B.2 presents supplementary results for the raw variance decomposition. Fig-

ures B.2b and B.2c show the share of within-major variance and between-major vari-

ance in total variance, respectively. The patterns are similar to those in Figure 1b, but

the within-major variance is slightly lower, and the between-major variance is slightly

higher.

B.3 Earnings Mismatch Definition and Supplementary Results

An alternative way to residualize the earnings is without interacting tenure terms with

industry and majors. Our results remain robust when using Equation 36.

log(yijmct) = αi + δmj +γjt + ξmt + f (c) + ϵijmct (36)
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(a) Variance Decomposition of Log Earnings
for College Graduates

(b) Share of within-major variance

(c) Share of between-major variance

Figure B.2: Supplementary Raw Variance Decomposition: (a) Variance Decomposition
of Log Earnings for College Graduates, (b) Share of within-major variance, (c) Share of
between-major variance.

B.4 Supplementary Facts from National Graduate Survey

The supplementary data to cross-validate the administrative data is the National Survey

of College Graduates from the U.S. used in Altonji et al. (2014). These surveys are cross-

sectional that includes individuals with at least a bachelor’s degree, sampled from the

American Community Survey during the reference week of the survey year. There are

three waves of survey that are used in their paper, which are: 1993, 2003, and 2010. I will

only be using the waves 2003 and 2010 since the 1993 wave does not record individual’s

industry. The results are weighted to reflect the entire population of college graduates in

the US as of each survey year.

I obtained the data from the authors’ published replication file. Therefore, the following

analysis is based on the same data selection criteria, focusing on full-time workers aged
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Figure B.3: Late Career

(a) Average Mit by Tenure, Raw (b) Average Mit by Time

Figure B.4: Average Mit by Tenure and by Time, Raw
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25–55. Since graduation year is unavailable for most individuals in the survey, I assume

that each person graduated at age 22. This graduation year proxy is applied to all indi-

viduals because, even when graduation year is reported, most of the reported values are

implausible.

B.4.1 Variance Decomposition

The first step to benchmark is the fact about the earnings inequality within college grad-

uates lies primarily within college majors. Since this is a survey, I modified equation 34

and equation 35 to include survey weights. Moreover, since the sample size of the survey

cannot support slicing it at the cohort-age-major-industry level, I group the cohort into 9

groups: graduating between 1960 - 1970; 1970 - 1975; 1975 - 1980; 1980 - 1985; 1985 -

1990; 1990 - 1995; 1995 - 2000; 2000 - 2005; 2005 - 2009. I also group age into 6 groups:

25-30; 30-35; 35-40; 40-45; 45-50; 50-55. In this subsection specifically, t and c are the

cohort and age group, respectively.

Raw Variance Changes I compute the raw variance by first calculating the variance for

each c and t and then pooling across the surveys to obtain a view over the entire lifetime.

See Table B.1 for the results. The results indicate that within-group variance dominates

for all age groups, while between-group variance remains relatively constant. In contrast,

total variance increases drastically over time. This pattern is consistent with the findings

from the Canadian administrative data.

Table B.1: Variance Decomposition by Age Group

Age Group 25 30 35 40 45 50
Within Variance 0.3328 0.3623 0.4339 0.4910 0.5157 0.5256
Within Share (%) 92.39% 92.44% 92.36% 92.19% 91.33% 93.05%
Between Variance 0.0273 0.0297 0.0359 0.0416 0.0489 0.0392
Between Share (%) 7.61% 7.56% 7.64% 7.81% 8.67% 6.95%
Total Variance 0.3601 0.3920 0.4697 0.5325 0.5646 0.5648

Further Variance Decomposition Within Major Similar to equation 35, I can further

decompose the earnings variance within majors into within- and between-industry com-

ponents. Table B.2 presents the results. The importance of industries within a major is

consistently much larger than the between-major variance. Since the survey also includes

occupation information, I compare the decomposition between industry and occupation.
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Table B.2: Detailed Variance Decomposition by Age Group

Age Group 25 30 35 40 45 50
Within Major Within Industry Var 0.2553 0.2652 0.3173 0.3511 0.3709 0.4014
Within Major Within Industry Share (%) 70.69% 67.71% 67.47% 65.93% 65.55% 70.99%
Within Major Between Industry Var 0.0761 0.0966 0.1150 0.1368 0.1423 0.1209
Within Major Between Industry Share (%) 21.27% 24.58% 24.56% 25.68% 25.31% 21.46%
Between Major Var 0.0273 0.0297 0.0359 0.0416 0.0489 0.0392
Between Major Share (%) 7.61% 7.56% 7.64% 7.81% 8.67% 6.95%
Total Variance 0.3601 0.3920 0.4697 0.5325 0.5646 0.5648

Table B.3 shows the results when I further decompose the within-major variance into

within- and between-occupation variances. The results indicate that the importance of

industry and occupation are of similar magnitudes. Thus, I can confidently focus on

industry decomposition in the administrative data and consider the mismatch between

industry and college major as a significant source of earnings inequality in the model. All

other sections of the paper will be based on the Canadian administrative data.

Table B.3: Variance Decomposition by Age Group: Majors vs. Occupations

Age Group 25 30 35 40 45 50
Within M. Within Occ. Var 0.2366 0.2492 0.2885 0.3153 0.3316 0.3546
Within M. Within Occ. Share (%) 65.57% 63.59% 61.36% 59.22% 58.69% 62.77%
Within M. Between Occ. Var 0.0948 0.1126 0.1438 0.1726 0.1815 0.1677
Within M. Between Occ. Share (%) 26.39% 28.70% 30.66% 32.40% 32.17% 29.69%
Between Major Var 0.0273 0.0297 0.0359 0.0416 0.0489 0.0392
Between Major Share (%) 7.61% 7.56% 7.64% 7.81% 8.67% 6.95%
Total Variance 0.3601 0.3920 0.4697 0.5325 0.5646 0.5648

B.5 Robustness Results for Ontario Highschoolers

The full regression table results for the Ontario highschoolers is in Table B.4.
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Table B.4: Sorting Patterns between Inherent Ability and Outcomes

(1) (2) (3) (4)

Dependent variable:
Ind.

Quartile
M–J
FE

Neg
Dev.

Pos
Dev.

Math==C#Lang==B 0.0129 -0.00138 -0.00312 -0.00542
(-0.66) (-0.36) (-0.42) (-1.06)

Math==C#Lang==A 0.0409 -0.000831 0.0296* 0.0194*
(-1.19) (-0.12) (-2.22) (-2.20)

Math==B#Lang==C -0.0300 -0.0102* -0.00813 -0.00937
(-1.36) (-2.36) (-0.96) (-1.64)

Math==B#Lang==B -0.00668 -0.00355 -0.00160 0.00159
(-0.36) (-0.97) (-0.23) (-0.34)

Math==B#Lang==A -0.0127 -0.0108* 0.0143 0.00559
(-0.53) (-2.29) (-1.60) (-0.93)

Math==A#Lang==C -0.0922** -0.0207*** -0.00993 -0.00329
(-2.99) (-3.42) (-0.81) (-0.43)

Math==A#Lang==B -0.0332 -0.00730 -0.00322 -0.000436
(-1.58) (-1.76) (-0.41) (-0.08)

Math==A#Lang==A 0.0212 -0.00531 0.0161 0.000695
(-0.93) (-1.19) (-1.93) (-0.13)

female -0.0241* -0.00680**
(-2.12) (-3.03)

cons 2.452*** 0.0719 0.171*** 0.192***
(-7.83) (-1.17) (-14.76) (-23.86)

N 41,000 41,000 16,000 25,000
R2 0.100 0.036 0.002 0.001
Adj. R2 0.095 0.031 0.001 0.001
F 2.355 13.11 3.094 2.987

Notes: Coefficients with t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.
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B.6 LinkedIn Identification Supplementary Results

Figure B.5: Snapshot of the LinkedIn Canada website when it first launched on Nov 11th,
2009
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Figure B.6: Google Trends comparison between LinkedIn, Indeed, and general web traffic
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Figure B.7: Screenshot of the LinkedIn jobs page on April 28, 2012
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Active Directory SME at Lockheed Martin in Washington
D.C.

Architect at Microsoft in Seattle

Audio Programmer at Neversoft Entertainment in Los
Angeles

Automotive Equipment Installation Management Plant
Engineering at The PAC Group in Other Region

Avaya Senior Systems Engineer at Lantana
Communications in Dallas, Fort Worth

Avaya Solution Architect at BrantTel Networks in Toronto,
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Build and Release Master at MuleSoft Inc in San Francisco
Bay Area
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Washington D.C.
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Federal Project Manager at I Q Staffing Solutions Inc in
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Front End Web Developer at hi5 in San Francisco Bay
Area

Global Technology Supply Manager at Cisco Systems in
San Francisco Bay Area

Graphics Software Engineer at Intel in San Francisco Bay
Area

I V Project Lead LTE eNB Verification at Nokia Siemens
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Instrumentation Technician at Genentech in San Diego

IT Technologist with Apache Tomcat Skills at MuleSoft Inc
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Java Applications Development Engineer at Research In
Motion in San Francisco Bay Area
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Java Programmer at Stratify in San Francisco Bay Area JIT Compiler Engineer at Adobe Systems in Boston

Junior to Intermediate Internet Software Engineers at CSN
Stores in Boston

Laboratory Engineering Specialist at Volkswagen Group of
America in Chattanooga, Tennessee

Lead Java Engineer 845 at Wavestaff in New York City LEAD PROCESS ENGINEER GOLD MILL HEAP LEACH
AND POX EXPERIENCE TORONTO AREA at PeopleFind
Inc in Toronto, Canada

Lead Software Test Engineer at Citrix Systems in Miami,
Fort Lauderdale

Leader Water Geospatial Asset Management at The City of
Calgary in Calgary, Canada

Linux Software Engineer at Intel in Portland, Oregon Loss Prevention Engineer at Saudi Aramco in Other
Region

Mac Lead Developer at YouSendIt in San Francisco Bay
Area

Manager of Engineering exciting small growing company
designing electro mechanical systems at GNR in Tampa,
St. Petersburg, Florida

Manager Reliability Physics Device Packaging at First
Solar in Toledo, Ohio

Manufacturing Eng Product Manager at BridgeWave
Communications in San Francisco Bay Area

Manufacturing Technical Specialist III Sr Engineer at
Genentech Inc in San Francisco Bay Area

Material Flow Engineering Specialist at Volkswagen Group
of America in Chattanooga, Tennessee

Mechanical Hardware Engineering Manager at Cisco
Systems in San Francisco Bay Area

Memory Management Engineer at Adobe Systems in San
Francisco Bay Area

Memory Software Developer at Research In Motion in
Kitchener, Canada

Metallurgist at Alcoa in Bellingham, Washington

MicroStrategy Architech at LowerMyBills com in Los
Angeles

Mobile Client Architect at NETWORKS IN MOTION in Los
Angeles

Mobile Product Architect at Silicon Image in San Francisco
Bay Area

Modeling Engineer at Rive Technology in New York City NET SQL Web Application Developer at Americaneagle
com in Chicago

Network Design Capacity Engineer at Time Warner Cable
Business Class in San Diego

Network Engineer at Tower Research Capital in New York
City

Nuclear Criticality Safety Engineer at Nuclear Safety
Associates in Johnson City, Tennessee

PCB Designer at Lynk Labs Inc in Chicago

Perfomance Engineer at Adobe Systems in San Francisco
Bay Area

Peripheral Hardware Engineering Manager at Cisco
Systems in San Francisco Bay Area

Physical Design Consultant at Synopsys in San Francisco
Bay Area

Pre integration Manual Test Engineer at Red Hat in Other
Region

Principal Bioprocess Consultant Engineer at Biopharm
Services in Hemel Hempstead, United Kingdom

Principal Engineer CAPA at Baxter Healthcare in Chicago Principal FPGA Design Engineer at Networking Start Up in
San Francisco Bay Area

Principal Release Engineer at Citysearch com in Los
Angeles

Principal Security Engineer at RSA The Security Division of
EMC in Boston

Principal Software Engineer LinkedIn Communication
System at LinkedIn in San Francisco Bay Area

Product Development Architect at Fluke Networks in
Washington D.C.

Product Engineer 3 4 at Acumed in Portland, Oregon Product Manager Orthopaedic at Materialise in Brussels,
Belgium

Product Marketing Manager at SunPower Corporation in
San Francisco Bay Area

Product Support Specialist at Stratify in San Francisco Bay
Area

Production Data Solutions Engineer at Genentech in San
Francisco Bay Area

Professional Services Consultant at Coit Staffing in San
Francisco Bay Area

Program Manager at YouSendIt in San Francisco Bay Area Project Cost Estimator at INVISTA in Houston, Texas

QA Automation Engineer at Citysearch com in Los Angeles QA Entry Level Engineering Internship MUST currently be
a student and live in the area at Chegg Inc in San
Francisco Bay Area

Quality Engineering Member of Technical Staff at
Salesforce com in San Francisco Bay Area

R D Project Engineer at C S Wholesale Grocers in Boston

Rectifier Firmware Engineer at Lineage Power in Dallas,
Fort Worth
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Francisco Bay Area
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DIRECTOR OF DIGITAL ONLINE STRATEGY at Columbia
College in Chicago

Director of Marketing at AppNexus in New York City

Director of Online Customer Experience Strategy at
Citigroup in New York City

Director of Product Management at CodeRyte in
Washington D.C.

Director of Web Marketing and Social Media at Aquire in
Dallas, Fort Worth
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Washington D.C.

Director Online Sales and Marketing Strategy at Citigroup
in New York City

Director Product Manager at Bush Industries in
Jamestown, New York

Director Products and Services Marketing at Ingersoll
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Director Regional Brands Snuff Richmond VA at Swedish
Match in Richmond, Virginia

E commerce Merchandiser at Sears Holdings Corporation
in Chicago

Embedded SW Lead Developer at Mentor Graphics in San
Francisco Bay Area

EMEA Marketing Director at Expedia in London, United
Kingdom

EMEA Online Partner Marketing Executive at Expedia in
London, United Kingdom

Emerging Markets Investment Bank Seeks HR or
Recruiting Specialist at Nova Capital Partners LLC in New
York City

Executive Communications Director at Yahoo in San
Francisco Bay Area

Experienced Project Manager at Taphandles Inc in Seattle

Global Alliance Marketing Manager Microsoft at Novell in
Seattle

Global Category Specialist Manger Services at Welch Allyn
in Syracuse, New York

Global Market Research Manager at Blizzard
Entertainment in Los Angeles

GM Travelocity ca at Travelocity com in Toronto, Canada Google Marketing and Communications Opportunities at
Google in New York City

Graphic Designer at Acumed in Portland, Oregon Head of On Line Marketing at Connect Distribution in Other
Region

Head of Player Marketing at PartyGaming in Other Region Head of PPC at Stickyeyes in Leeds, United Kingdom

Human Resources Director at Panduit Corp in Other
Region

Inside Sales Marketing Executive at Quest Computing Ltd
in Other Region

Interaction Designer at Express Scripts in St. Louis Interactive Marketing Coordinator at SunGard in
Philadelphia

Manager Global Trade Marketing at The Rockport
Company in Boston

Manager Healthcare Communications International and
Emerging Markets at Philips in Eindhoven, Netherlands

Manager of Solutions Services Marketing at ServiceSource
in San Francisco Bay Area

Market Development Manager Responsable D
veloppement des march s at EXFO in Quebec, Canada

Market Segment Manager at Sigma Aldrich in St. Louis Marketing Automation Manager at Sophos in Boston

Marketing Campaigns Intern at Space Time Insight in San
Francisco Bay Area

Marketing Communications Manager at ForeScout
Technologies in San Francisco Bay Area

Marketing Coordinator at Manufacturing and Marketing Co
in Boston

Marketing Director at Greene Resources in Richmond,
Virginia

Marketing Director for Luxury Men s Accessories Brand at
Couture Staff in New York City

Marketing Director Other Positions in Marketing at
IMImobile in Other Region

Marketing Intern at Hire Ed Solutions in New York City Marketing Manager at Air2Web in Atlanta

Marketing Manager at FoodShouldTasteGood in Boston Marketing Manager at Lineage Power in Dallas, Fort Worth

Marketing Manager at Mesirow Financial in Chicago Marketing Manager at Overtone in San Francisco Bay Area

Marketing Manager at Rezolve Group Inc in Boston Marketing Manager at SunGard in New York City

Marketing Manager at Thomson Reuters in Minneapolis-St.
Paul

Marketing Manager Breast Cancer Molecular Diagnostics
Portfolio at Agendia Inc in Los Angeles

Marketing Manager Digital Solutions at Cengage Learning
in San Francisco Bay Area

Marketing Manager Director Asia at Xoom Corporation in
San Francisco Bay Area

Marketing Manager Media Buyer SEM at CM Recruiting
Confidential in San Francisco Bay Area

Marketing Managers at Mead Johnson Nutrition in
Amsterdam, Netherlands

Marketing Performance Analyst at Vonage in New York
City
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(a) Earnings Deviation (b) Probability of receiving EI

(c) Probability of ever switching jobs (d) Probability of ever being laid off

(e) Duration of initial industry employment
(conditional on switching)

Figure B.8: Event study: (a) Earnings deviation, (b) probability of receiving EI, (c) prob-
ability of ever switching jobs, (d) probability of ever being laid off, and (e) duration of
initial industry employment by cohort.

The full regression table results for the event study is in Table B.5. Other event study
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plots are included in Figures B.8.

Table B.5: Event-Study DID by Graduation Cohort

(1) (2) (3) (4) (5)

Dependent variable:
First Job Duration
Before Switching

Ever
Switched

Ever Received
EI

Ever
Laid Off

Earnings
Deviation

1.Treatment#2005.grad year -0.349 -0.0205 0.0309 -0.00797 0.0125
( -1.59 ) ( -0.60 ) ( -0.78 ) ( -0.25 ) ( -0.15 )

1.Treatment#2006.grad year -0.259 0.0599 -0.00196 -0.0303 -0.0751
( -1.18 ) ( -1.80 ) ( -0.05 ) ( -0.96 ) ( -0.93 )

1.Treatment#2007.grad year -0.0943 0.0460 0.0375 0.00321 -0.102
( -0.44 ) ( -1.44 ) ( -1.01 ) ( -0.11 ) ( -1.31 )

1.Treatment#2008.grad year -0.0810 0.0351 0.0234 0.0468 -0.142
( -0.39 ) ( -1.12 ) ( -0.64 ) ( -1.57 ) ( -1.87 )

1.Treatment#2009.grad year 0 0 0 0 0
( . ) ( . ) ( . ) ( . ) ( . )

1.Treatment#2010.grad year -0.487* 0.0219 -0.0329 -0.00371 -0.233**
( -2.48 ) ( -0.74 ) ( -0.95 ) ( -0.13 ) ( -3.22 )

1.Treatment#2011.grad year -0.409* 0.0631* -0.0399 -0.0280 -0.396***
( -2.11 ) ( -2.18 ) ( -1.19 ) ( -1.02 ) ( -5.53 )

1.Treatment#2012.grad year -0.636** 0.0764** -0.0313 -0.0299 -0.356***
( -3.26 ) ( -2.66 ) ( -0.94 ) ( -1.10 ) ( -5.00 )

1.Treatment#2013.grad year -0.397* 0.0709* -0.0955** -0.0549* -0.323***
( -2.06 ) ( -2.50 ) ( -2.90 ) ( -2.04 ) ( -4.50 )

1.Treatment#2014.grad year -0.379 0.0961*** -0.0793* -0.0350 -0.301***
( -1.93 ) ( -3.36 ) ( -2.38 ) ( -1.29 ) ( -4.15 )

unemp rate jt -6.182*** 0.801*** -0.172* -0.0174 1.898***
( -3.75 ) (-13.12 ) ( -2.43 ) ( -0.30 ) ( -8.91 )

N 15,000 19,000 19,000 19,000 19,000
R2 0.061 0.037 0.035 0.006 0.054
Adj. R2 0.058 0.035 0.033 0.005 0.053

Notes: Coefficients with t-statistics in parentheses. Base cohort is 2009 (= 0). *** p < 0.01, ** p < 0.05, * p < 0.10.

C Model Details

C.1 Single–Peakedness and Single–Crossing of Rung Choice

Setup and notation Fix a major m, industry j, and ability p. The job ladder has rungs

r ∈ {0,1, . . . , r̄}. For simplicity, we will assume a continuous choice r ∈ [0, r̄] in the interior.

The discrete case follows by projection onto the nearest integer, and all results hold by

applying the Topkis Theorem to the discrete lattice {0,1, . . . , r̄}.
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Let φ ≡ φmj > 0 denote the major-industry requirement, and (â,Σ) the belief state about

match-specific skill a with a | I ∼ N (â,Σ). As in the text, the flow technology, introduced

in Equation 6, is copied here for convenience:

lny = lnAmp + η (rφ) − 1
2

(
λ+(r)[rφ− pa]2

+ +λ−(r)[rφ− pa]2
−

)
The expected output given the belief state is then

E[y | â,Σ] = Amp e
ηrφ Hr(ζ) , ζ := rφ− pâ, s2 := p2Σ,

with

Hr(ζ) = EZ∼N (0,s2)

[
exp

(
− 1

2(λ+(r)[ζ +Z]2
+ +λ−(r)[ζ +Z]2

−)
)]

Throughout we assume λ+(r),λ−(r) ≥ 0 where in the interior rungs both are strictly posi-

tive. At the boundary, we assume agents cannot be underqualified is at the lowest rung,

and can not be overqualified if at the highest rung. That boundary condition is expressed

as:

λ+(0) = 0, λ−(r̄) = 0, λ±(r) > 0 o.w.

The assumption of such boundary being only rung specific and not affected my φ is with-

out loss of generality. Also note that since log is an strictly increasing function, the max-

imizer of E[y | â,Σ] is the same as that of lnE[y | â,Σ]. Define ℓ(r, â) := lnE[y | â,Σ]. We

will build out results mostly in terms of ℓ. Our main results build on the lemma below,

which establish the log concavity and unimodality of Hr , our expectation term.

Lemma 1 (Log–concavity of Hr). For any fixed r, the function Hr : R→R+ is log–concave in
m. If λ+(r) > 0 and λ−(r) > 0, then lnHr is strictly concave and differentiable with (lnHr)′′(m) <

0 for all m.

Proof. Let V (z) ≡ 1
2(λ+(r)[z]2

+ + λ−(r)[z]2
−). Then Hr(ζ) =

∫
R

exp(−V (z))φs(z − ζ)dz, where

φs is the density ofN (0, s2).

Since V (z) is convex in z, exp(−V (z)) is log-concave and minimized at z = 0. Then, the

gaussian kernal φs(z − ζ) is also log-concave jointly in (z,ζ). Therefore, the product of

two log-concave functions is also log-concave in (z,ζ). By Prékopa’s theorem, the integral

of a log-concave function over z is log-concave in ζ. Thus, Hr(ζ) is log-concave in ζ and

maximized at ζ = 0.

From Lemma 1, it follows directly that (lnHr)′(ζ) is strictly decreasing in ζ. Since Hr(ζ)
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decays at least as fast as a Gaussian in both tails, we have the following lemma:

Lemma 2 (Tails of (lnHr)′). If λ+(r) > 0 and λ−(r) > 0, then

(lnHr)
′(ζ)→ +∞ as ζ→−∞,

(lnHr)
′(ζ)→−∞ as ζ→ +∞.

If λ+(r) = 0, then

(lnHr)
′(ζ)→ 0 as ζ→−∞.

If λ−(r) = 0, then

(lnHr)
′(ζ)→ 0 as ζ→ +∞.

Now that we have established the properties of Hr , we can proceed to prove the main

propositions.

Proposition 2 (Single–peakedness in r). For any fixed (m,p, j, â,Σ) and η > 0, the function
ℓ(r, â) is concave in r and has a unique maximizer r∗(â). The unique maximizer r∗(â) is charac-
terized by:

lnH ′r(r
∗φ− pâ) = −η

Proof. The proof follows directly from Lemma 1 and Lemma 2. The partial derivative of

ℓ with respect to r is given by

∂ℓ
∂r

= ηφ+ (lnHr)
′(ζ,Σ)

and the second derivative is given by

∂2ℓ

∂r2 = φ2(lnHr)
′′(ζ,Σ) ≤ 0

Then, by the two lemmas established above, ℓ(r, â) is concave in r and has a unique max-

imizer r∗(â) given by the first order condition.

Proposition 2 establishes that for any fixed belief state (â,Σ), the worker’s choice of job

rung r is single-peaked and uniquely maximized at r∗(â). Next, we show that the optimal

rung choice is monotone in the belief about match-specific skill â: i.e., higher â leads to

weakly higher r∗(â).
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Proposition 3 (Monotone Sorting of Rung Choice). ℓ(r, â) has increasing differences in (r, â)

and consequently the argmax correspondence â 7→ r∗(â) is (weakly) increasing.

Proof. Observe that the cross-partial derivative of ℓ with respect to r and â is non-negative:

∂2ℓ
∂r∂â

= −pφ(lnHr)
′′(ζ,Σ) ≥ 0

Therefore, ℓ(r, â) has increasing differences in (r, â). By Topkis’s theorem, the argmax

correspondence â 7→ r∗(â) is (weakly) increasing.

The single crossing property of log output in (r, â) says that high match quality workers

choose weakly higher rungs. Such sorting force plays a key role in the model’s predictions

about learning and mobility, and the effect of removing information frictions on the ag-

gregate match quality. If the penalty function is symmetric, we can obtain a closed form

solution for the optimal rung choice.

Proposition 4 (Closed form under symmetry). If λ+(r) = λ−(r) = λ > 0 for the rung under
consideration, then

Hr(ζ) = (1 +λs2)−1/2 exp
(
− λζ2

2(1 +λs2)

)
with first derivative,

(lnHr)
′(ζ) = − λ

1 +λs2 ζ

Then, the unique optimal mismatch level is:

ζ∗ =
1 +λs2

λ
η

and the unique continuous maximizer solves

r∗(â;Σ) =
pâ

φ
+
η

φ

(1
λ

+ p2Σ

)
The results in Proposition 4 directly follows from simple algebraic manipulation. The

next proposition establishes the comparative statics of the optimal rung choice with re-

spect to the belief state (â,Σ) and the penalty parameters η,λ.

Proposition 5 (Comparative Statics of Optimal Rung Choice). The optimal rung choice
r∗(â;Σ) is strictly increasing in â, Σ and η, and strictly decreasing in λ.
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Proof. The proof follows directly from the closed form solution in Proposition 4. The

comparative statics are given by:

∂r∗

∂â
=

p

φ
> 0,

∂r∗

∂Σ
=
ηp2

φ
> 0,

∂r∗

∂η
=

1
φ

(1
λ

+ p2Σ

)
> 0,

∂r∗

∂λ
= −

η

φ
1
λ2 < 0

Discussion of the Asymetric Case The symmetric penalty assumption in Proposition 4

is for analytical convenience and to obtain a closed form solution for the optimal rung

choice. When penalty is not symmetric, our updated Hr(ζ) is in Equation 37 and there is

no closed form solution for the optimal choices. However, since our Lemma 1 holds for

any λ+(r),λ−(r) ≥ 0, all the other propositions hold without the symmetry assumption. In

particular, since (lnHr)′(ζ) is strictly decreasing in ζ from (−∞,∞), it must crosses −ηφ
exactly once, and therefore the optimal rung choice is still unique.

Hr(ζ) =
exp

(
− λ+ζ

2

2(1+λ+s2)

)
√

1 +λ+s2
Φ

 ζ√
1 +λ+s2

+
exp

(
− λ−ζ

2

2(1+λ−s2)

)
√

1 +λ−s2
Φ

− ζ√
1 +λ−s2

 (37)

C.1.1 Effect of Uncertainty on Output and Match Value

The previous section discussed the effect of some parameters, including uncertainty Σ,

on the optimal rung choice and optimal mismatch level ζ∗. Here we expand the analysis

to the effect of uncertainty on expected output and match value. Let us still consider the

symmetric penalty case, observe that the effect of uncertainty on expected output is given

by:

∂E[y | â,Σ]
∂Σ

≡ E[y | â,Σ] · ∂ℓ
∂Σ

= E[y | â,Σ] ·
p2λ

2(1 +λs2)2

(
λζ2 − (1 +λs2)

)
(38)

Note whether the effect is positive or negative depends only on the term λζ2 − (1 +λs2).

The results are summarized in the following corollary:

Corollary 6 (Effect of Uncertainty on Expected Output). The effect of uncertainty Σ on
expected output E[y | â,Σ] depends on the mismatch level ζ as follows:

• If ζ2 > 1
λ + s2, then ∂E[y|â,Σ]

∂Σ > 0. In this case, higher uncertainty increases expected
output.
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• If ζ2 < 1
λ + s2, then ∂E[y|â,Σ]

∂Σ < 0. In this case, higher uncertainty decreases expected
output.

• If ζ2 = 1
λ + s2, then ∂E[y|â,Σ]

∂Σ = 0. In this case, expected output is invariant to uncertainty.

And at the optimal mismatch level ζ∗ = 1+λs2

λ η, the effect of uncertainty can be summa-

rized as follows:

Corollary 7 (Condition for Positive Effect of Uncertainty on Expected Output). At the
optimal mismatch level ζ∗ = 1+λs2

λ η, the effect of uncertainty Σ on expected output E[y | â,Σ]

is positive if and only if:

η2 >
λ

1 +λs2

In this case, higher uncertainty increases expected output.

However, from Equation 18, the effect of reducing uncertainty deterministically increases

match value J at the rate of Σ2

µ2 . Therefore, the global effect to the match value J from

uncertainty Σ is the sum of the two effects above and is more nuanced.

C.2 Equilibrium Characterization

The steps to numerically solve and characterize the Block Recursive Equilibrium of the

model are as follows:

1. Initialize parameters

2. Given the parameters, solve for the Hamilton-Jacobi-Bellman equations equilib-

rium value functions

3. Given the optimal value functions and policy functions, compute the optimal allo-

cation of workers with p ability to their optimal majors (This is computed as shares

of workers in each major given their ability p due to Frechet distribution of prefer-

ences)

4. For each major-ability pair:

(a) Set up and discretize the Kolmogorov forward equations and back out the tran-

sition matrix of workers for each state space
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(b) Given the transition matrix, solve for the ergodic (steady state) distribution

of workers for each state space, normalize to mass 1 within each major-ability

pair

5. Stack all the steady state distributions of workers across all major-ability pairs

• Normalize the distribution such that the share of workers in each major by

ability is equal to the shares computed in step 3

C.3 Computation Notes for Ergodic Distribution

C.3.1 Discretizing Learning

Recall the effect of learning to value function is the changes in value function J with

respect to time t.

Λ =
∂
∂Σ

(
Σ
σ

)2

︸   ︷︷   ︸
drift in Σ

+
1
2

(
Σ
σ

)2 ∂Γ

∂a2︸       ︷︷       ︸
diffusion in a

(39)

We discretize this by using conservative flux on non-uniform grid. Specifically, for the

variance of belief, since we mandate it to always decrease over time, i.e. individuals

can only become more and more accurate on their belief about skills, we use an upwind

scheme. We use the standard Kalman-Bucy filter with drift term
(
Σ
σ

)2
. Define this drift

term as D for cleaner notation.

[∂Σ(DΓ )]i ≈ −
Di

∆Σi
Γi +

Di+1

∆Σi+1
Γi+1 (40)

where since our mean belief could fluctuate both up and down, we use a central differ-

encing scheme.

1
2∂a

(
D∂aΓ

)∣∣∣∣
i
≈

Di+ 1
2

∆ai+ 1
2
∆ai

Γi+1 −
( Di+ 1

2

∆ai+ 1
2
∆ai

)
Γi +

Di− 1
2

∆ai− 1
2
∆ai

Γi−1 −
( Di− 1

2

∆ai− 1
2
∆ai

)
Γi (41)

To ensure this scheme works on non-uniform grid, we weight the drift by neighbouring

values:
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Di± 1
2

= 1
2(Di +Di±1) and ∆ai+ 1

2
= 1

2(∆ai +∆ai±1) (42)

C.3.2 Conservation of Mass in Transition Matrix

Following convention, we define the transition matrix with sources as columns and des-

tinations as rows. For each employed source column e:

∑
x∈E-rows

Γ learn
x,e +

∑
x∈E-rows

Γ ee
x,e + Γ eu

e,e +
∑

u∈U-rows

Υ eu
u,e = 0 (43)

Specifically, Γ learn and Γ ee are conservative in its source by construction, meaning their

mass is conserved within their own block. Γ eu
e,e and Υ eu must add up to zero for each source

e since their inflows and outflows must balance with mass (δ+ε)+limπ→∞1{separation}·π.

Similarly, for each unemployed source column u:

∑
x∈E-rows

Γ ue
x,u +

∑
y∈U-rows

Υ uu
y,u = 0 (44)

The conservation of mass within the unemployment blocks says individuals must either

remain unemployed or transition to employment.

Since in our setup, we have exogenous shock on exiting the economy, and this shock

affects everyone at the same rate, we can simply subtract that rate from the diagonal

entries of the transition matrix at the end at once. Therefore, each column sums to −σ .

D Estimation Appendix

D.1 Estimation Data

D.1.1 Naics 2 digit

There are a total of 20 industries at the 2-digit NAICS code level. We include self-

employment and code it as 99 for industry code. For estimation, we aggregate the fol-

lowing:

• Primary Sector:
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– 11 – Agriculture, Forestry, Fishing and Hunting

– 21 – Mining, Quarrying, and Oil and Gas Extraction

– 22 – Utilities

– 23 – Construction

– 31-33 – Manufacturing

• Finance:

– 51 – Information and Cultural Industries

– 52 – Finance and Insurance

• Public Administration:

– 91 – Public Administration

D.1.2 ISCED description

In the estimation, we first aggregate the CIP codes to the 1-digit ISCED codes to classify

college majors. Below is the description of each code.

0. Generic programmes

1. Education

2. Arts and Humanities

3. Social sciences, journalism, and information

4. Business, administration, and law

5. Natural sciences, mathematics, and statistics

6. Information and Communication Technologies (ICTs)

7. Engineering, manufacturing, and construction

8. Agriculture, forestry, fisheries, and veterinary

9. Health and welfare

10. Services
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Then, we select the top three majors with the highest share of graduates. They are [3]

Social Sciences, Journalism, and Information, [4] Business, Administration, and Law, and

[7] Engineering, Manufacturing, and Construction.

D.1.3 Ability Level

Ability level is approximated by 12th grade math and language scores from the informa-

tion submitted by Ontario public high school students. Students took at least one math

and one language course in their final year of high school. However, they are allowed to

take more than one math courses (and they normally do to boost their chances of getting

into a good university program).

We categorize students into 5 mutually exclusive groups based on their math and lan-

guage letter grades. We restrict our sample to only individuals who receives a language

grade and a math grade higher than a C. Out of the sample of Ontario public high school

students included in the ELMLP platform, a total of 51.9% of students are included in

the analysis. The groups are defined as follows:

1. Moderate achievement: One of Math and Language letter grades is B

2. High achievement: Both Math and Language letter grades are A

D.2 Estimation Structures and Details

Major-Ability Specific Productivity For the major-ability specific productivity term

Amp, I decompose it into a linear combination of an ability-specific term Ap and a lin-

ear coefficient αp that scales with the ranking of the major, based on the ranking of the

share of major m in ability p.

Amp = Āp +α · rankmp (45)

Major-Industry specific productivity requirement A key set of parameter that is em-

pirically driven is the major-industry specific productivity requirement φmj . This param-

eter captures the specific skill requirements for each major-industry pair and is crucial

for understanding the matching process in the labor market. However, with 11 majors

and 21 industries, it is challenging to estimate all φmj parameters directly from the data. I
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provide some structure to reduce the number of parameters to estimate while preserving

key information.

First, I use the major-industry specific fixed effect obtained from Equation 1 to obtain a

major-industry specific ranking. A high ranking indicates a higher skill requirement for

that major-industry pair, therefore the hardest to enter but highest return if not penal-

ized. With that, I consider a major specific linear relationship of entry barriers as de-

scribed in Equation 46. Note, this ranking is not the same as the ranking of major-ability

specific production Amp in Equation 45.

φmj = φ̄j + β · rankmj (46)

Figure D.9: Illustration of the initial belief distribution and learning process.

D.3 Estimation Note

To compute the model moments for transitions over time, we take advantage of the

model’s steady-state properties. After constructing the transition matrix generator, we

can track how a newborn cohort evolves by using the matrix exponential function. Specif-

ically, if we denote the transition matrix generator as Q, then the distribution over states

evolves after t periods is given by:

p(t) = eQtp(0) (47)
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This approach allows us to efficiently compute the distribution of individuals across

states at any time t without simulating each individual’s path. Note that our TM from

Section 4.9 corresponds to Q here. Furthermore, to compute these dynamics efficiently

on a large, sparse state space as introduced in the model, we use the backward Euler

method. For a small time step ∆t, the backward Euler method approximates the matrix

exponential as follows:

pt+∆ − pt
∆

= Qpt+∆ =⇒ pt+∆ = (I −∆Q)−1pt (48)

and t/∆ successive steps yield the approximation to the exponential [(I −∆Q)−1]t/∆ ≈ eQt.

As long as ∆t is sufficiently small, this approximation is both accurate and A-stable (even

if some transitions are large/fast, the method remains stable). Although our model is esti-

mated at the annual frequency, we use a monthly time step in the backward Euler method

to ensure accuracy. This also helps us match the model to the data on transitions. In the

model, individuals cannot switch industries while employed; to switch industries, they

must first enter a brief period of unemployment. Since time is continuous, individuals in

the model can transition very quickly. In the data, we observe high industry-switching

rates between any two consecutive years. By using a smaller time step and excluding short

unemployment spells, we can better approximate the annual transition rates observed in

the data.

Assumptions in Using the Backward Euler Method For the backward Euler method to

be valid, we need the following assumptions to hold:

1. The transition matrix generator Q is time-invariant. This holds in our model since

we estimated it in steady state.

2. Q has to be a valid generator with non-negative off-diagonal elements, negative

diagonal elements, and rows summing to the leak rate (our exogenous exit rate σ ).

This guarantees that there will never be negative probabilities creating by inverting.

This also holds in our model.

3. The time step ∆t must be sufficiently small to ensure the stability and accuracy of

the backward Euler method. In our implementation, we use a monthly time step to

achieve this.

We define two sets of industry EE transitions. The first set is path strict, i.e. individuals
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E Comparative Statics

Consider the three majors, two abilities, and three industries described earlier. I obtained

the rankings from empirical shares of major-ability pairs and empirical earnings rankings

of major-industry pairs. With 1 as the highest rank (highest average earnings) and 3 as

the lowest, Table E.6 summarizes the rankings for major-industry pairs.

Primary
Sector

Finance,
Insurance,

and Information
Public

Administration

Social Sciences,
Journalism, and Information 3 2 1

Engineering,
Manufacturing, and Construction 1 2 3

Business,
Administration, and Law 2 3 1

Table E.6: Empirical employment share rankings of major-industry pairs (1 = highest, 3
= lowest).

Rows correspond to majors (m = 1,2,3), columns to industries (j = 1,2,3). Similarly,

Table E.7 summarizes the rankings for major-ability pairs.

Social Sciences,
Journalism,

and Information

Engineering,
Manufacturing,

and Construction

Business,
Administration,

and Law

Low Ability 2 3 1
High Ability 1 2 3

Table E.7: Empirical share rankings of major-ability pairs (1 = highest, 3 = lowest).

E.1 Comparative Statics Results

This subsection presents comparative statics results to show how changes in key param-

eters affect model outcomes. I highlight how the model’s additional features, relative to

Baley et al. (2022), influence the results.

I first describe the steady-state outcomes of the baseline model. The average skill be-

lief is slightly below the initial value (sometimes even slightly negative). There are sub-

stantial differences between the perpetual youth and infinitely lived agent settings. The
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steady-state distribution of belief variances is lower for infinitely lived agents. If agents

exit the economy due to an exogenous shock, beliefs become much more dispersed. As

predicted, higher-ability individuals end up in higher ranks regardless of industry. Fig-

ure E.11 shows the steady-state distributions of average beliefs, variances of beliefs, and

optimal job rungs for the baseline calibration for the less productive major and lower

innate ability. In contrast to the clustering at lower rungs, when I shift to a more produc-

tive major and higher ability, the steady-state distribution of average beliefs is slightly

more dispersed, but the optimal job rung is much more concentrated at higher rungs.

Since individuals exit the economy stochastically, there is not enough time to learn, and

individuals end up with more dispersed beliefs in all cases.

(a) Average Belief (b) Variance of Belief

(c) Optimal Job Rung

Figure E.10: Steady-state distributions, Baseline Calibration, Low Productive Major and
Low Ability

Lifespan of Agents A key aspect of the model is the perpetual youth setting. This

assumption is crucial for mapping the model to the data, as new cohorts enter each year

and I observe large differences in transition dynamics as cohorts age. However, most
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(a) Average Belief (b) Variance of Belief

(c) Optimal Job Rung

Figure E.11: Steady-state distributions, Baseline Calibration, High Productive Major and
High Ability

of the literature on directed search with learning assumes infinitely lived agents. This

distinction leads to less accurate learning in the steady state, as agents do not have enough

time to learn their true ability. Therefore, this small difference leads to large differences in

the steady state distributions of variances of beliefs, leading to more dispersed earnings,

as observed from the data.

Learning Process In this model, three key factors govern each agent’s learning process:

the first two moments of the initial belief distribution (âm0,Σm0) and the learning rate

µ. Examining the production function (Equation 6) and the value of the match (Equa-

tion 17), I see that ∂y
∂âm0

> 0, ∂r∗

∂âm0
> 0, and

∂φmj

∂âm0
> 0. Thus, a higher initial belief âm0 leads

to a higher expected value from entering that industry and a greater steady-state share of

workers in that submarket. The initial variance Σm0 has a more nuanced effect. When the

mean is close to the productivity requirement φmjr, higher variance reduces the proba-

bility of meeting the requirement, lowering the optimal job rung r∗ and shifting workers
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(a) Average Belief (b) Variance of Belief

(c) Optimal Job Rung

Figure E.12: Steady-state distributions, Infinitely Lived Agents

to industries with lower requirements, resulting in lower earnings. If the mean is well

above the requirement, higher variance has little effect.

The more interesting effect is from the learning rate µ. The rate of learning governs how

quickly agents converge to their true ability. A larger µ means a noisier signal, which

in turn leads to slower learning. This parameter is estimated by looking at the speed of

convergence of earnings variance. A higher µ leads to more persistent mismatch and a

higher steady-state variance of beliefs, resulting in more dispersed earnings.
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